
Data Structure and Algorithms - QueueData Structure and Algorithms - Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open atQueue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open at
both its ends. One end is always used to insert data (enqueue) and the other is used to remove databoth its ends. One end is always used to insert data (enqueue) and the other is used to remove data
(dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored first will be(dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored first will be
accessed first.accessed first.

A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exitsA real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits
first. More real-world examples can be seen as queues at the ticket windows and bus-stops.first. More real-world examples can be seen as queues at the ticket windows and bus-stops.

Queue RepresentationQueue Representation

As we now understand that in queue, we access both ends for different reasons. The followingAs we now understand that in queue, we access both ends for different reasons. The following
diagram given below tries to explain queue representation as data structure −diagram given below tries to explain queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and Structures. ForAs in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and Structures. For
the sake of simplicity, we shall implement queues using one-dimensional array.the sake of simplicity, we shall implement queues using one-dimensional array.

Basic OperationsBasic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then completelyQueue operations may involve initializing or defining the queue, utilizing it, and then completely
erasing it from the memory. Here we shall try to understand the basic operations associated witherasing it from the memory. Here we shall try to understand the basic operations associated with
queues −queues −

enqueue()enqueue() − add (store) an item to the queue. − add (store) an item to the queue.

dequeue()dequeue() − remove (access) an item from the queue. − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient. These are −Few more functions are required to make the above-mentioned queue operation efficient. These are −

peek()peek() − Gets the element at the front of the queue without removing it. − Gets the element at the front of the queue without removing it.

isfull()isfull() − Checks if the queue is full. − Checks if the queue is full.

isempty()isempty() − Checks if the queue is empty. − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by In queue, we always dequeue (or access) data, pointed by frontfront pointer and while enqueing (or pointer and while enqueing (or
storing) data in the queue we take help of storing) data in the queue we take help of rearrear pointer. pointer.

Let's first learn about supportive functions of a queue −Let's first learn about supportive functions of a queue −

peek()peek()

This function helps to see the data at the This function helps to see the data at the frontfront of the queue. The algorithm of peek() function is as of the queue. The algorithm of peek() function is as
follows −follows −

AlgorithmAlgorithm

begin procedure peekbegin procedure peek
 return queue[front] return queue[front]
end procedureend procedure

Implementation of peek() function in C programming language −Implementation of peek() function in C programming language −

ExampleExample

intint peek peek()() {{
 returnreturn queue queue[[frontfront];];
}}

isfull()isfull()

As we are using single dimension array to implement queue, we just check for the rear pointer toAs we are using single dimension array to implement queue, we just check for the rear pointer to
reach at MAXSIZE to determine that the queue is full. In case we maintain the queue in a circularreach at MAXSIZE to determine that the queue is full. In case we maintain the queue in a circular
linked-list, the algorithm will differ. Algorithm of isfull() function −linked-list, the algorithm will differ. Algorithm of isfull() function −

AlgorithmAlgorithm

beginbegin procedure isfull procedure isfull

 ifif rear equals to MAXSIZE rear equals to MAXSIZE
 returnreturn truetrue
 elseelse
 returnreturn falsefalse
 endif endif

endend procedure procedure

Implementation of isfull() function in C programming language −Implementation of isfull() function in C programming language −

ExampleExample

boolbool isfull isfull()() {{
 ifif((rear rear ==== MAXSIZE MAXSIZE -- 11))
 returnreturn truetrue;;
 elseelse
 returnreturn falsefalse;;
}}

isempty()isempty()

Algorithm of isempty() function −Algorithm of isempty() function −

AlgorithmAlgorithm

beginbegin procedure isempty procedure isempty

 ifif front front isis less than MIN OR front less than MIN OR front isis greater than rear greater than rear
 returnreturn truetrue
 elseelse
 returnreturn falsefalse
 endif endif

endend procedure procedure

If the value of If the value of frontfront is less than MIN or 0, it tells that the queue is not yet initialized, hence empty. is less than MIN or 0, it tells that the queue is not yet initialized, hence empty.

Here's the C programming code −Here's the C programming code −

ExampleExample

boolbool isempty isempty()() {{
 ifif((front front << 00 |||| front front >> rear rear))
 returnreturn truetrue;;
 elseelse
 returnreturn falsefalse;;
}}

Enqueue OperationEnqueue Operation

Queues maintain two data pointers, Queues maintain two data pointers, frontfront and and rearrear. Therefore, its operations are comparatively difficult. Therefore, its operations are comparatively difficult
to implement than that of stacks.to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −The following steps should be taken to enqueue (insert) data into a queue −

Step 1Step 1 − Check if the queue is full. − Check if the queue is full.

Step 2Step 2 − If the queue is full, produce overflow error and exit. − If the queue is full, produce overflow error and exit.

Step 3Step 3 − If the queue is not full, increment − If the queue is not full, increment rearrear pointer to point the next empty space. pointer to point the next empty space.

Step 4Step 4 − Add data element to the queue location, where the rear is pointing. − Add data element to the queue location, where the rear is pointing.

Step 5Step 5 − return success. − return success.

Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen situations.Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen situations.

Algorithm for enqueue operationAlgorithm for enqueue operation

procedure enqueueprocedure enqueue((datadata))

 ifif queue queue isis full full
 returnreturn overflow overflow
 endif endif

 rear rear ←← rear rear ++ 11
 queue queue[[rearrear]] ←← data data
 returnreturn truetrue

endend procedure procedure

Implementation of enqueue() in C programming language −Implementation of enqueue() in C programming language −

ExampleExample

intint enqueue enqueue((intint data data))
 ifif((isfullisfull())())
 returnreturn 00;;

 rear rear == rear rear ++ 11;;
 queue queue[[rearrear]] == data data;;

 returnreturn 11;;
endend procedure procedure

Dequeue OperationDequeue Operation

Accessing data from the queue is a process of two tasks − access the data where Accessing data from the queue is a process of two tasks − access the data where frontfront is pointing and is pointing and
remove the data after access. The following steps are taken to perform remove the data after access. The following steps are taken to perform dequeuedequeue operation − operation −

Step 1Step 1 − Check if the queue is empty. − Check if the queue is empty.

Step 2Step 2 − If the queue is empty, produce underflow error and exit. − If the queue is empty, produce underflow error and exit.

Step 3Step 3 − If the queue is not empty, access the data where − If the queue is not empty, access the data where frontfront is pointing. is pointing.

Step 4Step 4 − Increment − Increment frontfront pointer to point to the next available data element. pointer to point to the next available data element.

Step 5Step 5 − Return success. − Return success.

Algorithm for dequeue operationAlgorithm for dequeue operation

procedure dequeueprocedure dequeue

 ifif queue queue isis empty empty
 returnreturn underflow underflow
 endend ifif

 data data == queue queue[[frontfront]]
 front front ←← front front ++ 11
 returnreturn truetrue

endend procedure procedure

Implementation of dequeue() in C programming language −Implementation of dequeue() in C programming language −

ExampleExample

intint dequeue dequeue()() {{
 ifif((isemptyisempty())())
 returnreturn 00;;

 intint data data == queue queue[[frontfront];];
 front front == front front ++ 11;;

 returnreturn data data;;
}}

For a complete Queue program in C programming language, please For a complete Queue program in C programming language, please click hereclick here ..

https://www.tutorialspoint.com/data_structures_algorithms/queue_program_in_c.htm

