

Introducing Python Data Types

Gaurav Kr. suman MIT4

1 | P a g e

They are known as core data types because they are effectively

built into the Python language—this implies that there is a

specific syntax for generating most of them.

Python’s Core Data Types include:

• Numbers

• Strings

• Lists

• Dictionaries

• Tuples

• Files

• Other types include: Sets, types, None, Booleans

Among Python Data Types, numbers are the most important.

The usual object sets may include integers (numbers without a

fractional part), floating-point numbers (roughly, numbers with

a decimal point in them), and other types (like unlimited-

precision “long” integers, complex numbers with imaginary

parts, fixed-precision decimals, and sets).

Python’s basic number types support the normal mathematical

operations. For instance, the plus sign (+) performs addition, a

star (*) is used for multiplication, and two stars (**) are used for

exponentiation:

2 | P a g e

Other data types in Python include more exotic number

objects—such as complex numbers, fixed-precision decimal

numbers, and sets—and the third-party open-source extension

domain has even more (e.g., matrixes and vectors).

Long Data Types in Python/Long Integer Data Types:

Long integers, also known as long or long integer data types

in Python, are integers of unlimited size, written like integers

and followed by an uppercase or lowercase L. These long data

types in Python exist only in Python 2.x.

Integers that are too long to be stored in a 32-bit integer is

automatically made into Longs. However, you can explicitly

create one by adding an L after the number

Complex Numbers:

Complex data types, also known as complex numbers are of

the form a + bJ, where a and b are floats and J (or j) represents

the square root of -1 (which is an imaginary number). The real

part of the number is a, and the imaginary part is b. Complex

numbers are much in use in Python programming.

3 | P a g e

Strings, one of the core data types in Python are used to record

textual information as well as arbitrary collections of bytes.

Strings are also an example of what we call a sequence in

Python—that is, a positionally ordered collection of other

objects. Sequences in Python, maintain a left-to-right order

among the items they contain: their items are stored and

fetched by their relative position. Precisely speaking, strings are

sequences of one-character strings; other types of sequences

include lists and tuples.

Sequence Operations:

Strings, quite like sequences, support operations that assume

a positional ordering among items. For example, if we have a

four-character string, we can verify its length with the built-in

length function and fetch its components with indexing

expressions:

4 | P a g e

Every string operation is, actually a sequence operation—that

is, these operations will work on other sequences in Python as

well, including lists and tuples. In addition to generic sequence

operations, though, strings have operations all their own,

available as methods (functions attached to the object, which

are triggered with a call expression).

Python allows strings to be enclosed in single or double quote

characters and it also has a multiline string literal form

enclosed in triple quotes (single or double). When this form is

used, all the lines are concatenated together, and end-of-line

characters are added where line breaks appear.

Python also supports a “raw” string literal that turns off the

backslash escape mechanism (they start with the letter r), as

well as a Unicode string form that supports internationalization

(they begin with the letter u and contain multibyte characters).

Technically speaking, the Unicode string, is a different Python

data type than normal string. However, this data type supports

all the same string operations.

The Python list object is the most generic Python Data Type.

Lists are positionally ordered collections of arbitrarily typed

objects and can be of any length. Lists, like Strings, are also

5 | P a g e

mutable, can be modified in-place by assignment to offsets as

well as a variety of list method calls.

A list is a typical example of the mutual data type in Python. It

can contain mixed data types. A list and a tuple share many

common features. Because a list is a modifiable data type, it

has some additional operations. A whole chapter is dedicated

to the Python list.

Sequence Operations:

Lists generally support all the sequence operations for strings;

the only difference is that results usually list instead of strings.

Nesting:

Nesting is perhaps the best feature of Lists, one of Python’s

core data types. Lists support arbitrary nesting. They can be

nested in any combination, and as deeply as required. For

example, you can have a list containing a dictionary, which

leads to another list, and so on. multidimensional arrays in

Python are a classic application of this feature.

6 | P a g e

Python dictionaries are known as mappings. Mappings may

also be described as collections of other objects, but they store

objects by key instead of by relative position. mappings do not

maintain any reliable left-to-right order; they simply map keys

to associated values. Dictionaries, the only mapping type in

Python’s core objects set, are also mutable. These data types

may be changed in-place and can grow and shrink on demand,

just as lists do.

Mapping Operations:

When written as literals, dictionaries are coded in curly braces

and consist of a series of “key: value” pairs. Dictionaries are

useful anytime we need to associate a set of values with keys—

to describe the properties of something, for instance. As an

example, consider the following three-item dictionary (with

keys “food,” “quantity,” and “color”):

A tuple is an immutable sequence Python data type. The tuple

may contain mixed data types.

For example:

fruits = (“oranges”, “apples”, “bananas”)

https://www.digitalvidya.com/blog/tuples-in-python/

7 | P a g e

Tuples are created using round brackets. Here we have a tuple

consisting of three fruit types.

fruits = “apples”, “oranges”, “bananas”

print(fruits) # prints (‘apples’, ‘oranges’, ‘bananas’)

The tuple object may be grossly explained as a list that cannot

be changed. Tuples are, in fact, sequences, like lists, but they

are also immutable, like strings. Syntactically, tuples, as core

Python data types, are coded in parentheses instead of square

brackets, and they support arbitrary types, nesting, and the

usual sequence operations:

File objects may be described as Python code’s main interface

to external files on your computer. They are one of the popular

core data types in Python, but without any specific literal syntax

for creating them. To create a file object, one needs to call the

built-in open function, passing in an external filename as a

8 | P a g e

string, and a processing mode string. For example, to create an

output file, you would pass in its name and the ‘w’ processing

mode string to write data:

Other Python data types, may or may not qualify for

membership, depending on how broad the category is defined

to be. Sets, for example, are a recent addition to the language.

Sets may be defined as containers of other objects created by

calling the built-in set function, and they support the usual

mathematical set operations. Sets are available as one of the

standard data type of Python, since Python 2.6.

Among other data types in Python, decimal numbers (fixed-

precision floating-point numbers) and Booleans (with

predefined True and False objects that are essentially just the

integers 1 and 0 with custom display logic), are important.

Booleans have long supported a special placeholder object

called None.

