
Block Diagram of Digital computer

A digital computer is considered to be a calculating device that can perform arithmetic operations at enormous speed. It is defined as a device that operates upon information/data. To be able to process data the computer is made of various functional units to perform its specified task.

Block diagram of computer

Input Unit:

Computers need to receive data and instruction in order to solve any problem. Therefore, we need to input the data and instructions into the computers. The input unit consists of one or more input devices. Keyboard is the one of the most commonly used input device. Other commonly used input devices are the Mouse, Scanner, Microphone etc. All the input devices perform the following functions.

- Accept the data and instructions from the outside world.
- Convert it to a form that the computer can understand.
- Supply the converted data to the computer system for further processing.

Storage Unit:

The storage unit of the computer holds data and instructions that are entered through the input unit, before they are processed. It preserves the intermediate and final results before these are sent to the output devices. It also saves the data for the later use. The various storage devices of a computer system are divided into two categories.

a) **Primary Storage:** Stores and provides very fast. This memory is generally used to hold the program being currently executed in the computer, the data being received from the

input unit, the intermediate and final results of the program. The primary memory is temporary in nature. The data is lost, when the computer is switched off. In order to store the data permanently, the data has to be transferred to the secondary memory. The cost of the primary storage is more compared to the secondary storage. Therefore, most computers have limited primary storage capacity.

b) **Secondary Storage:** Secondary storage is used like an archive. It stores several programs, documents, data bases etc. The programs that you run on the computer are first transferred to the primary memory before it is actually run. Whenever the results are saved, again they get stored in the secondary memory. The secondary memory is slower and cheaper than the primary memory. Some of the commonly used secondary memory devices are Hard disk, CD, etc.,

Memory Size:

All digital computers use the binary system, i.e. 0's and 1's. Each character or a number is represented by an 8-bit code.

The set of 8 bits is called a byte. A character occupies 1-byte space. A numeric occupies 2-byte space. Byte is the space occupied in the memory.

The size of the primary storage is specified in KB (Kilobytes) or MB (Megabyte). One KB is equal to 1024 bytes and one MB is equal to 1000KB. The size of the primary storage in a typical PC usually starts at 16MB. PCs having 32 MB, 48MB, 128 MB, 256MB memory are quite common.

Output Unit:

The output unit of a computer provides the information and results of a computation to outside world. Printers, Visual Display Unit (VDU) are the commonly used output devices. Other commonly used output devices are Speaker, Headphone, Projector etc.

Arithmetic Logical Unit:

All calculations are performed in the Arithmetic Logic Unit (ALU) of the computer. It also does comparison and takes decision. The ALU can perform basic operations such as addition, subtraction, multiplication, division, etc and does logic operations viz, >, <, =, 'etc. Whenever calculations are required, the control unit transfers the data from storage unit to ALU once the computations are done, the results are transferred to the storage unit by the control unit and then it is send to the output unit for displaying results.

Control Unit:

It controls all other units in the computer. The control unit instructs the input unit, where to store the data after receiving it from the user. It controls the flow of data and instructions from the storage unit to ALU. It also controls the flow of results from the ALU to the storage unit. The control unit is generally referred as the central nervous system of the computer that control and synchronizes its working.

Central Processing Unit:

The Control Unit (CU) and Arithmetic Logic Unit (ALU) of the computer are together known as the Central Processing Unit (CPU). The CPU is like brain performs the following functions:

- It performs all calculations.
- It takes all decisions.
- •It controls all units of the computer.

Types of Computer

Computers can be broadly classified by their speed and computing power.

1	PC (Personal Computer)	It is a single user computer system having moderately powerful microprocessor
2	WorkStation	It is also a single user computer system which is similar to personal computer but have more powerful microprocessor.
3	Mini Computer	It is a multi-user computer system which is capable of supporting hundreds of users simultaneously.
4	Main Frame	It is a multi-user computer system which is capable of supporting hundreds of users simultaneously. Software technology is different from minicomputer.
5	Supercomputer	It is an extremely fast computer which can execute hundreds of millions of instructions per second.

PC (Personal Computer)

A PC can be defined as a small, relatively inexpensive computer designed for an individual user. PCs are based on the microprocessor technology that enables manufacturers to put an entire CPU on one chip. Businesses use personal computers for word processing, accounting, desktop publishing, and for running spreadsheet and database management applications. At home, the most popular use for personal computers is playing games and surfing Internet.

Although personal computers are designed as single-user systems, these systems are normally linked together to form a network. In terms of power, now-a-days High-end models of the Macintosh and PC offer the same computing power and graphics capability as low-end workstations by Sun Microsystems, Hewlett-Packard, and Dell.

Workstation

Workstation is a computer used for engineering applications (CAD/CAM), desktop publishing, software development, and other such types of applications which require a moderate amount of computing power and relatively high quality graphics capabilities.

Workstations generally come with a large, high-resolution graphics screen, large amount of RAM, inbuilt network support, and a graphical user interface. Most workstations also have a mass storage device such as a disk drive, but a special type of workstation, called a diskless workstation, comes without a disk drive.

Common operating systems for workstations are UNIX and Windows NT. Like PC, Workstations are also single-user computers like PC but are typically linked together to form a local-area network, although they can also be used as stand-alone systems.

Minicomputer

It is a midsize multi-processing system capable of supporting up to 250 users simultaneously.

Mainframe

Mainframe is very large in size and is an expensive computer capable of supporting hundreds or even thousands of users simultaneously. Mainframe executes many programs concurrently and supports many simultaneous execution of programs.

Supercomputer

Supercomputers are one of the fastest computers currently available. Supercomputers are very expensive and are employed for specialized applications that require immense amount of mathematical calculations (number crunching). For example, weather forecasting, scientific simulations, (animated) graphics, fluid dynamic calculations, nuclear energy research, electronic design, and analysis of geological data (e.g. in petrochemical prospecting).

