Bootstrapping

A compiler is a complex enough program that we would like to write it in a
friendlier language than assembly language. In the UNIX programming
environment, compilers are usually written in C. Even C compilers are wrif-
ten in . Using the facilities offered by a language to compile itsell is the
essence of bowoistrapping. Here we shall ook at the use of boolsirapping 1o
create compilers and to move them from one machine to another by modifying
the back end. The basic ideas of bootstrapping have been kpown since the
mid 1950°s { Strong et al. [ 1958]).

Bootstrapping may raise the gquestion. “How was the first compiler com-
piled?” which sounds like, “*What came first. the chicken or the egg?" but is
casier o answer. For an answer we consider how Lisp became a program-
ming language. McCarthy [1981] notes thar in late 1958 Lisp was vsed as a
notation for writing functions; they were then hand-translated into assembly
language and run. The implementation of an interpreter for Lisp occurred
unexpectedly. McCarthy wanted to show that Lisp was a notation for describ-
ing functions “much neater than Twring machines or the general recursive
definitions wsed in recursive funciion theory,”” so he wrote a function
evalle, a| in Lisp that took a Lisp expression < as an argument. S R. Russell
noticed that eval could serve as an interpreter for Lisp. hand-coeded it, and
thus created a programming language with an interpreter. As mentioned in
Section .1, rather than generating target code, an interpreter actually per-
forms the operations of the source program.

For bootstrapping purposes. a compiler is characterized by three languages:
the source language S that it compiles, the target language T that it generates
code for, and the implementation language 1 that it is written in. We

represent the three languages using the following diagram, called a T-diagram,
becavse of s shape (Bratman [ 1961]).

Within text, we abbreviaie the above T-diagram as 31 T. The three languages
S, 1. and T may =l be quite different. For example, a compiler may run on
one machine and produce target code for another machine.
often called a cross-compifer.

Suppose we write a cross-compiter for a new language L in implementation
language S to generate code for machine MN; that is, we creare LgMN. If an
existing compiler for 5 runs on machine M and gencrates code for M. ir is
characterized by SpaM. IF L§MN is run through Spa M. we get a compiler
L ng N, that is, a compiler from L to N that runs on M. This process is illus-
trated in Fig. 11.1 by putting together the T-diagrams for these compilers.

Such a compiler is



When T-diagrams are pul together as in Fig. 11.1, note that the implemen-
tation language 5 of the compiler LgM must be the zame as the source
language of the existing compiler Spq M and that the target language M of the
existing compiler must be that same as the implementation language of the

translated form Ly M. A trio of T-diagrams such as Fig. 11.1 can be thought
of as an equation

LsMN + Spabd = Lpg N

Example 11.1. The first version of the EQN compiler {see Section 12.1) had
C as the implementation language and generated commands for the text for-
mattzr TROFF. As shown in the followmng diagram, a cross-compiler for

EQMN, runming on a PDP-i 1, was oblained by running EQMN ¢ TROFF through
the C compiler O g b1 on the PRP-11.

EQN TROFF EQN TRO Fl—'|
C C o L

It

Ome form of bootstrapping builds up a compiler for larger and larger sub-
sets of a langrage. Suppose a new language L is ta be implemented on
machine M. As a first step we might write a small compiler that translates a
subset 5 of L into the target code for M: that is, a compiler Spg M. We then
use the subset S to write a compiler L gM for L. When LM is run through
Sm M, we obtain an implementation of L, namely. L pgM. Neliac was one of
the Mirst languages 1o be implemented in 115 own language {Huskey., Halstead,
and McocArthur [ 1960)} .

Wirth [1971| notes that Pascal was first implemented by wniting a compiler
in Pascal itseli. The compiler was then translated "*by hand™ o an available
low-level language without any attempt at optimization. The compiler was for
a subset (60 per cent)” of Pasca); several bootstrapping stages later a com-
piler for all of Pascal was obtzined. Lecarme and Peyrolle-Thomas [1978)
summarize methods that have been used 1o bootsirap Pascal compilers.

For the advantages of bootstrapping to be realized fully. a compiler has to
be written in the langeage it compiles. Suppose we write a compiler L . M for
langwage L in L to generate code For machine M. Development takes place on
a machine M, where an existing compiler LpgM for L runs and gencrates
code for M. By fNrst compiting L N with L pq M. we oblain a cross-compiler
Lpa N that runs on M, but produces code for N:



M

The compiler L. N can be compiled a second Gime. this time using the gen-
erated cross-compaler:

II. L NN

B

The result of the sccond compilation is a compiler Ly N that runs on N and

generates code for N. The are a number of wseful applications of thas two-
step process, so we shall write it as im Fig, V0.2,

Example 11.2. This example is motivated by the development of the Fortran
H compiler (see Section 12.4), “The compiler was itself written in Fortran
and bootstrapped three times. The first time was to convert from running on
the 1IBM 7094 to System/360 — an arduous procedure. The sccond nime was
to optimize itself, which reduced the size of the compiler from about 350K o

about 400K bytes” (Lowry and Medlock | 196%]).

Fig. 11.2, Bootstrapping a compiler.

Using bootstrapping techniques, an optimizing compiler can optimize itself.
Suppose all development s done on machine M. We have S5gsM, a good
optimizing compiler for a language § written in 5, and we want Spg M, a good
optimizing compiler for 5 written in M.

We can create SpgtMI, a quick-and-dirty compiler for S omn M that not
only generates poor code, but also takes a long time to do so. (M7 indicates a
pocr implementation in M. Syt Mi is a poor implementation of a compiler
thalt generates poor code) Howewver, we can use the indifferent compiler
SMi MI o obtain a good compiler for S in two steps:



3 M 5 M
S M'Ls. 5 Mop M
s |s I IYE
M3

First, the optimizing compiler 55M is translated by the guick-and-dirty com-
piler (o produce SpqiM, a poor implementation of the optimizing compiler,
but one that does produce good code. The good optimizing compiler Spq M is
obtained by recompiling S§M through 5pq4 M. o



