

**B.Sc. Semester-IV
Core Course-IX (CC-IX)
Organic Chemistry-III**

**I. Nitrogen Containing Functional Groups
2. Amines: Nomenclature and Physical Properties**

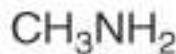
**Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi**

I Nitrogen Containing Functional Groups

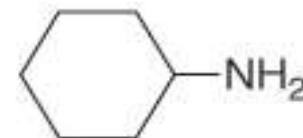
Preparation and important reactions of nitro and compounds, nitriles and isonitriles

Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid.

Coverage:


1. Amines: Nomenclature, Physical Properties, Some Interesting and Useful Amines

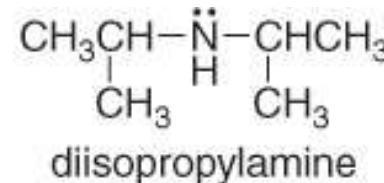
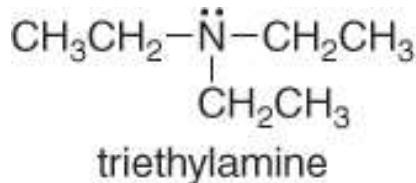
Amines


Nomenclature

- **1° Amines** are named using either systematic or common names.
- To assign a systematic name, find the longest continuous chain bonded to the amine nitrogen, and change the –e ending of the parent alkane to the suffix **–amine**. Then use the usual rules of nomenclature to number the chain and name the substituents.
- To assign a common name, name the alkyl group bonded to the nitrogen atom and add the word **amine**, forming a single word.

Examples

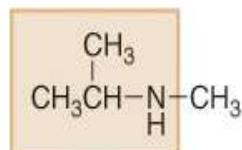
Systematic name: **methanamine**
Common name: **methylamine**

Systematic name: **cyclohexanamine**
Common name: **cyclohexylamine**

Amines

Nomenclature

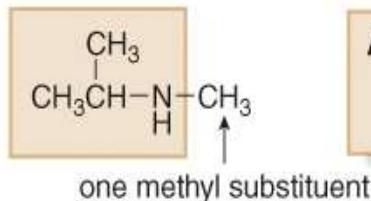

- Secondary and 3° Amines having identical alkyl groups are named using the prefix di- or tri- with the name of the primary amine.

- Secondary and 3° Amines having more than one kind of alkyl group are named as *N*-substituted primary amines using the following procedure:

Example Name the following 2° amine: $(\text{CH}_3)_2\text{CHNHCH}_3$.

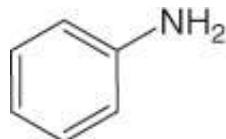
Step [1] Designate the longest alkyl chain (or largest ring) bonded to the N atom as the parent amine and assign a common or systematic name.

3 C's in the
longest chain

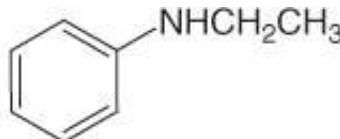

isopropylamine (common name)
or
2-propanamine (systematic name)

Amines

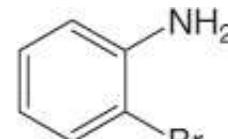
Nomenclature


Step [2]

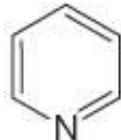
Name the other groups on the N atom as alkyl groups, alphabetize the names, and put the prefix *N*- before the name.



Answer: *N*-methylisopropylamine (common name)
or
N-methyl-2-propanamine (systematic name)


- Aromatic amines are named as derivatives of aniline.

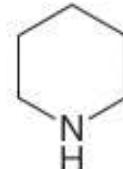
aniline

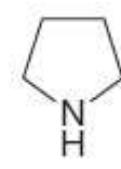


N-ethylaniline



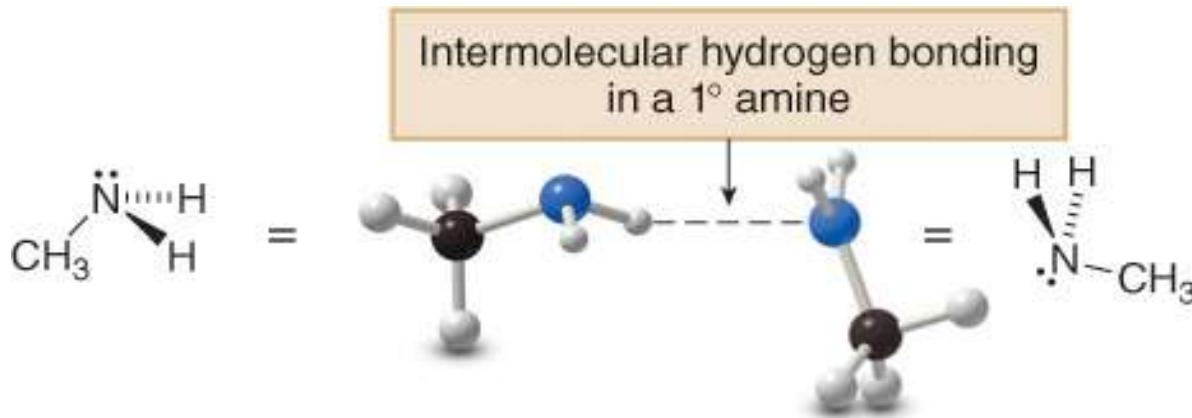
o-bromoaniline


- There are many different nitrogen heterocycles, each with a different name. The N atom is considered to be at position “1”.


pyridine

pyrrole

piperidine



pyrrolidine

Amines

Physical Properties

- Amines exhibit dipole-dipole interactions because of the polar C—N and N—H bonds.
- Primary and 2° amines are capable of intermolecular hydrogen bonding because they contain N—H bonds.
- Since nitrogen is less electronegative than oxygen, these hydrogen bonds are weaker than those between O and H.

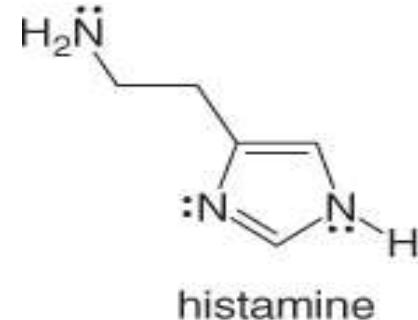
Amines

Physical Properties of Amines

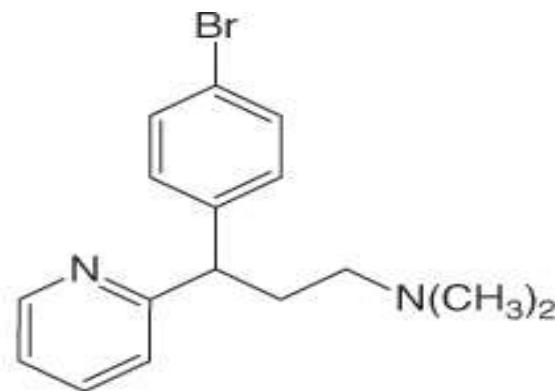
Property	Observation		
Boiling point and melting point	<ul style="list-style-type: none">Primary (1°) and 2° amines have higher bp's than similar compounds (like ethers) incapable of hydrogen bonding, but lower bp's than alcohols that have stronger intermolecular hydrogen bonds.		
	$\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3$ MW = 74 bp 38 °C	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2$ MW = 73 bp 78 °C	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$ MW = 74 bp 117 °C
	<p>Increasing intermolecular forces Increasing boiling point</p>		
	<ul style="list-style-type: none">Tertiary (3°) amines have lower boiling points than 1° and 2° amines of comparable molecular weight, because they have no N–H bonds and are incapable of hydrogen bonding.		
	3° amine $\text{CH}_3\text{CH}_2\text{N}(\text{CH}_3)_2$ MW = 73 bp 38 °C no N–H bond	$\text{CH}_3\text{CH}_2-\overset{\text{H}}{\underset{\text{N}}{\text{—}}}\text{CH}_2\text{CH}_3$ MW = 73 bp 56 °C N–H bond	2° amine higher bp
Solubility	<ul style="list-style-type: none">Amines are soluble in organic solvents regardless of size.All amines having ≤ 5 C's are H_2O soluble because they can hydrogen bond with H_2O (Section 3.5C).Amines having > 5 C's are H_2O insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H_2O solvent.		

MW = molecular weight

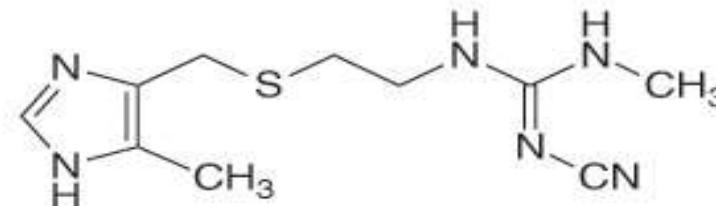
Amines


Some Interesting and Useful Amines

- Many low molecular weight amines have foul odors.
- Trimethylamine $[(\text{CH}_3)_3\text{N}]$, formed when enzymes break down certain fish proteins, has the characteristic odor of rotting fish.
- Putrescine ($\text{NH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2$) and cadaverine ($\text{NH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2$) are both poisonous diamines with putrid odors. They too are present in rotting fish, and are partly responsible for the odors of semen, urine, and bad breath.
- Naturally occurring amines derived from plant sources are called alkaloids.

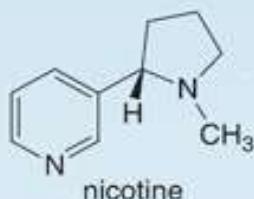

Amines

Some Interesting and Useful Amines

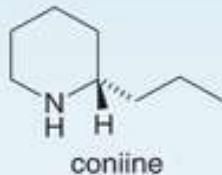

- Histamine, a rather simple triamine that is present in many tissues, is responsible for a wide variety of physiological effects.

- Understanding the physiological properties of histamine has helped chemists design drugs to counteract some of its undesirable effects. Antihistamines bind to the same active site as histamine in the cell, but they evoke a different response. Examples are brompheniramine and cimetidine.

brompheniramine
antihistamine in several
over-the-counter allergy remedies


cimetidine
(Tagamet)
antiulcer drug

Amines


Some Interesting and Useful Amines

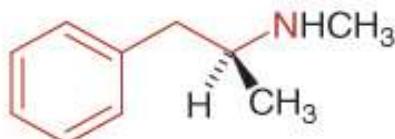
- **Caffeine** is a bitter alkaloid found in coffee, tea, cola beverages, and chocolate. Caffeine is a mild stimulant, usually imparting a feeling of alertness after consumption. It also increases heart rate, dilates airways, and stimulates the secretion of stomach acid. Excessive use can result in insomnia.

- **Nicotine** is an addictive and highly toxic compound isolated from tobacco. In small doses it acts as a stimulant, but in large doses it causes depression, nausea, and even death. Nicotine is synthesized in plants as a defense against insect predators, and is used commercially as an insecticide.

- **Coniine**, a poisonous alkaloid isolated from the seeds, leaves, and roots of hemlock (*Conium maculatum*), has been known since ancient times. Ingestion causes weakness, paralysis, and finally death. The Greek philosopher Socrates was executed by being forced to drink a potion prepared from hemlock in 339 B.C.

Amines

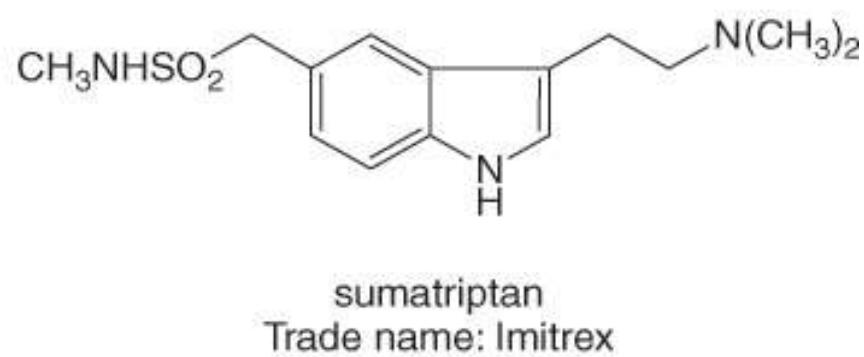
Some Interesting and Useful Amines


- A large number of physiologically active compounds are derived from 2-phenethylamine ($C_6H_5CH_2CH_2NH_2$). These compounds include adrenaline, noradrenaline, methamphetamine, and mescaline. Each contains a benzene ring bonded to a two-carbon unit with a nitrogen atom (shown in red).

a hormone secreted in response to stress
(Chapter 7, introductory molecule)

a neurotransmitter that increases heart rate
and dilates air passages

methamphetamine
an addictive stimulant sold as
speed, meth, or crystal meth



mescaline
a hallucinogen isolated from peyote, a cactus native
to the southwestern United States and Mexico

Amines

Some Interesting and Useful Amines

- Cocaine, amphetamines, and several other addicting drugs increase the level of dopamine in the brain, which results in a pleasurable “high.” With time, the brain adapts to increased dopamine levels, so more drug is required to produce the same sensation.
- Understanding the neurochemistry of these compounds has led to the synthesis and availability of several useful drugs. Examples are fentanyl and sumatriptan.

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi