B.Sc. Semester-IV
 Core Course-VIII (CC-VIII) Inorganic Chemistry

I. Coordination Chemistry
 5. CFSE in Weak and Strong Fields

Dr. Rajeev Ranjan
University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Coordination Chemistry: 20 Lectures

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of $10 \mathrm{Dq}(\Delta \mathrm{o})$, CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of $10 \mathrm{Dq}(\Delta \mathrm{o}, \Delta \mathrm{t})$. Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage:

1. CFSE, Measurement of $10 \mathrm{Dq}(\mathrm{Do})$
2. CFSE in Weak and Strong Fields
3. Spectrochemical Series
4. Pairing Energy
5. Factors Affecting the Magnitude of 10Dq ($\Delta \mathrm{o}, \Delta \mathrm{t})$

Crystal Field Diagrams for Octahedral and Tetrahedral Complexes

Magnitude of Δ Depends on Following Factors

1. Oxidation state of the metal ion

$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	$19800 \mathrm{~cm}^{-1}$
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	$28600 \mathrm{~cm}^{-1}$

2. Number of ligands and geometry

$$
\Delta_{t}<\Delta_{0} \quad \Delta_{t}=4 / 9 \Delta_{0}
$$

3. Nature of the ligand
$\mathrm{I}^{-}<\mathrm{S}^{2-}-\mathrm{SCN}^{-}<\mathrm{Cl}^{-}<\mathrm{NO}_{3}{ }^{-}<\mathrm{N}_{3}{ }^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{H}_{2} \mathrm{O}<\ldots \ldots \mathrm{CN}^{-}-<\mathrm{CO}$

Crystal Field Splitting Energy (CFSE)

- In Octahedral field, configuration is: $\mathrm{t}_{2 \mathrm{~g}}{ }^{\mathrm{x}} \mathrm{e}_{\mathrm{g}}{ }^{\mathrm{y}}$
- Net energy of the configuration relative to the average energy of the orbitals is:

$$
\begin{gathered}
=(-0.4 x+0.6 y) \Delta_{o} \\
\Delta_{\mathrm{O}}=10 \mathrm{Dq}
\end{gathered}
$$

BEYOND d ${ }^{3}$

- In weak field: $\Delta_{0}<P$, $=>t_{2 g}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{1}$
- In strong field $\Delta_{0}>P,=>t_{2 g}{ }^{4}$
- P-paring energy

High-Spin and Low-Spin Complexes for $3 d^{4}-3 d^{7}$ ions

- Octahedral 3d Complexes
$\Delta_{0} \approx \mathrm{P}$ (pairing energy)
Both low-spin ($\Delta_{0} \leq P$) and high-spin ($P \geq \Delta_{o}$) complexes are found.
- Tetrahedral Complexes
$\Delta_{T d}=4 / 9 \Delta_{o}$ hence $P \gg \Delta_{T d}$ and tetrahedral complexes are always high spin

When the $4^{\text {th }}$ electron is assigned it will either go into the higher energy e_{g} orbital at an energy cost of D_{q} or be paired at an energy cost of P, the pairing energy.

$$
\mathbf{P}<\Delta_{0} \quad \mathbf{P}>\Delta_{0}
$$

Coulombic repulsion energy and exchange energy

Possible Electron Arrangements in the Split 3d-Orbitals in an Octahedral Complex of Co^{3+}

- \quad Strong - field (low - spin):
- Yields the minimum number of unpaired electrons.
- Weak - field (high - spin):
- Gives the maximum number of unpaired electrons.
- Hund's rule still applies.

(b)

Placing Electrons in d－Orbitals

－－	d^{5}
	$\uparrow \uparrow$
	$\uparrow \uparrow \uparrow$
生 \dagger＋	
1 u．e．	5 u．e．

$\uparrow \uparrow$			$\begin{aligned} & \psi+ \\ & \forall \ddagger+ \end{aligned}$
＋		\dagger	
	2 u．e．	1 u．e．	1 u

$$
\begin{aligned}
& \text { キ サ生 } \\
& 1 \text { u.e. } \quad 3 \text { u.e. }
\end{aligned}
$$

d^{10}

$\stackrel{4}{+1}+\frac{1}{\square}+$ 0 u．e．$\quad 0$ u．e．
u．e．－Unpaired Electrons

The Splitting of d-Orbitals Depends on the Ligands Bonded to Ni^{2+} in It’s Octahedral Complexes

The Spectrochemical Series
Weak-field ligands $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CN}^{-}$Strong-field ligands

What is the CFSE of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$?
C.N. $=6 \therefore \mathrm{O}_{\mathrm{h}} \quad \mathrm{Fe}($ III $) \therefore \mathrm{d}^{5} \quad$ h.s.
I.s.
$\mathrm{CN}^{-}=$s.f.l.

CFSE $=3 \times-0.4 \Delta_{\text {oct }}+2 \times 0.6 \Delta_{\text {oct }}=0$
CFSE $=5 x-0.4 \Delta_{\text {oct }}+2 P=-2.0 \Delta_{\text {oct }}+2 P$ Because CN is a strong field ligand, CFSE $=-2.0 \Delta_{\text {oct }}+2 P$

If the CFSE of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is $-0.8 \Delta_{\text {oct }}$, what spin state is it in?
C.N. $=6 \therefore \mathrm{O}_{\mathrm{h}} \mathrm{Co}(\mathrm{II}) \therefore \mathrm{d}^{7}$
h.s.

CFSE $=\left(5 x-0.4 \Delta_{\text {oct }}\right)+\left(2 \times 0.6 \Delta_{\text {oct }}\right)+2 P$

$$
=-0.8 \Delta_{\text {oct }}+2 P
$$

$$
\begin{aligned}
\text { CFSE } & =\left(6 x-0.4 \Delta_{\text {oct }}\right)+\left(0.6 \Delta_{\text {oct }}\right)+3 P \\
& =-1.8 \Delta_{\text {oct }}+P
\end{aligned}
$$

Dr. Rajeev Ranjan

Correlation of High and Low Spin Complexes with Spectrochemical Series

Weak-field ligands $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CN}^{-}$Strong-field ligands

Increasing Δ

Factors Influencing the Magnitude of Δ-Splitting

- Oxidation State

$$
\Delta_{0}\left(\mathrm{M}^{3+}\right)>\Delta_{0}\left(\mathrm{M}^{2+}\right)
$$

$$
\text { e.g. } \Delta_{0} \text { for } \mathrm{Fe}(I I I)>\mathrm{Fe}(\mathrm{II}) \text {. }
$$

The higher oxidation state is likely to be low-spin

- $5 d>4 d>3 d$ e.g. $\mathrm{Os}(\mathrm{II})>\mathrm{Ru}(\mathrm{II})>\mathrm{Fe}(\mathrm{II})$

All $5 d$ and $4 d$ complexes are low-spin.

Thank You

Dr. Rajeev Ranjan

University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

