B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry

I. Coordination Chemistry 5. CFSE in Weak and Strong Fields

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Coordination Chemistry: 20 Lectures

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq (Δ o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq (Δ o, Δ t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage:

- 1. CFSE, Measurement of 10 Dq (Δo)
- 2. CFSE in Weak and Strong Fields
- 3. Spectrochemical Series
- 4. Pairing Energy
- 5. Factors Affecting the Magnitude of 10Dq (Δo , Δt)

Crystal Field Diagrams for Octahedral and Tetrahedral Complexes

Magnitude of Δ Depends on Following Factors

- **1. Oxidation state of the metal ion**
 $[Ru(H_2O)_6]^{2+}$ 19800 cm⁻¹ $[Ru(H_2O)_6]^{3+}$ 28600 cm⁻¹
- 2. Number of ligands and geometry

 $\Delta_t < \Delta_o \qquad \qquad \Delta_t = 4/9\Delta_o$

3. Nature of the ligand

 $I^{-}<\!S^{2^{-}}<\!SCN^{-}<\!CI^{-}<\!NO_{3}^{-}<\!F^{-}<\!OH^{-}<\!C_{2}O_{4}^{-2^{-}}<\!H_{2}O<\!\dotsCN^{-}<\!CO$

Crystal Field Splitting Energy (CFSE)

- In Octahedral field, configuration is: t_{2g} × e_g y
- Net energy of the configuration relative to the average energy of the orbitals is:

= (-0.4x + 0.6y)∆_o ∆_o = 10 Dq

BEYOND d³

- In weak field: $\Delta_0 < P$, => $t_{2g}^3 e_g^1$
- In strong field $\Delta_0 > P$, => t_{2g}^4
- P paring energy

High-Spin and Low-Spin Complexes for 3d⁴ – 3d⁷ ions

Octahedral 3d Complexes

 $\Delta_{o} \approx P(pairing energy)$

Both low-spin ($\Delta_o \leq P$) and high-spin ($P \geq \Delta_o$) complexes are found.

Tetrahedral Complexes

 Δ_{Td} = 4/9 Δ_{o} hence P >> Δ_{Td} and tetrahedral complexes are always high spin

When the 4th electron is assigned it will either go into the higher energy e_g orbital at an energy cost of D_q or be paired at an energy cost of P, the pairing energy.

Coulombic repulsion energy and exchange energy

Possible Electron Arrangements in the Split 3d - Orbitals in an Octahedral Complex of Co³⁺

- Strong field (low spin):
 - Yields the minimum number of unpaired electrons.
- Weak field (high spin):
 - Gives the maximum number of unpaired electrons.
- Hund's rule still applies.

Placing Electrons in *d*-Orbitals

Dr. Rajeev Ranjan

The Splitting of *d*-Orbitals Depends on the Ligands Bonded to Ni²⁺ in It's Octahedral Complexes

The Spectrochemical Series

Weak-field ligands $I^- < Br^- < CI^- < F^- < H_2O < NH_3 < en < CN^-$ Strong-field ligands

Dr. Rajeev Ranjan

What is the CFSE of $[Fe(CN)_6]^{3-?}$?

CFSE = $3 \times -0.4 \Delta_{oct} + 2 \times 0.6 \Delta_{oct} = 0$ CFSE = $5 \times -0.4 \Delta_{oct} + 2P = -2.0 \Delta_{oct} + 2P$ Because CN⁻ is a strong field ligand, CFSE = $-2.0 \Delta_{oct} + 2P$

If the CFSE of $[Co(H_2O)_6]^{2+}$ is -0.8 Δ_{oct} , what spin state is it in? C.N. = 6 \therefore O_h Co(II) \therefore d⁷ h.s.


```
CFSE = (5 \times -0.4 \Delta_{oct}) + (2 \times 0.6 \Delta_{oct}) + 2P
= - 0.8 \Delta_{oct} + 2P
```

CFSE = $(6 \times -0.4 \Delta_{oct}) + (0.6 \Delta_{oct}) + 3P$ = - 1.8 $\Delta_{oct} + P$

 $0.6 \Delta_{oct}$

- 0.4 ∆_{oct}

l.s.

Dr. Rajeev Ranjan

Correlation of High and Low Spin Complexes with Spectrochemical Series

Weak-field ligands $I^- < Br^- < CI^- < F^- < H_2O < NH_3 < en < CN^-$ Strong-field ligands

Factors Influencing the Magnitude of Δ -Splitting

• Oxidation State $\Delta_{o} (M^{3+}) > \Delta_{o} (M^{2+})$ *e.g.* Δ_{o} for Fe(III) > Fe(II).

The higher oxidation state is likely to be low-spin

5d > 4d > 3d
 e.g. Os(II) > Ru(II) > Fe(II)

All 5d and 4d complexes are low-spin.

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi