B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry-III

II. Transition Elements 4. Transition Elements - Ionization Enthalpy

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Transition Elements:

12 Lectures

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer & Bsworth diagrams). Difference between the first, second and third transition series.

Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy)

Coverage:1. Transition Elements - Ionization Enthalpy

- The first ionization enthalpies of the *d*-block elements
 - → Greater than those of the *s*-block elements in the same period of the Periodic Table
 - : 1. The atoms of the *d*-block elements are smaller in size
 - 2. Greater effective nuclear charges

$K \rightarrow Ca \text{ (sharp }\uparrow); \quad Ca \rightarrow Sc \text{ (slight }\uparrow)$

Element	Ionization enthalpy (kJ mol ⁻¹)				
	1st	2nd	3rd	4th	
К	418	3 070	4 600	5 860	
Ca	590	1 150	4 940	6 480	
Sc	632	1 240	2 390	7 110	
Ti	661	1 310	2 720	4 170	
V	648	1 370	2 870	4 600	
Cr	653	1 590	2 990	4 770	

Sc \rightarrow Cu (slight \uparrow); Cu \rightarrow Zn (sharp \uparrow)

Element	Ionization enthalpy (kJ mol ⁻¹)				
	1st	2nd	3rd	4th	
Cr	653	1 590	2 990	4 770	
Mn	716	1 510	3 250	5 190	
Fe	762	1 560	2 960	5 400	
Со	757	1 640	3 230	5 100	
Ni	736	1 750	3 390	5 400	
Cu	745	1 960	3 550	5 690	
Zn	908	1 730	3 828	5 980	

- Going across the first transition series
 - →
 - the nuclear charge of the elements increases
 - ➔ additional electrons are added to the 'inner' 3d sub-shell
- The screening effect of the additional 3*d* electrons is <u>significant</u>
- The effective nuclear charge experienced by the 4s electrons <u>increases</u> very slightly across the series
- For 2nd, 3rd, 4th... ionization enthalpies,

slight and gradual \uparrow across the series are observed.

Ionization Enthalpy

Dr. Rajeev Ranjan

- The first few successive ionization enthalpies for the *d*-block elements
 - → do not show dramatic changes
 - : 4s and 3d energy levels are close to each other

THANK YOU