

**M.Sc. Semester-II
Compulsory Paper-7 (CP-7)
Group Theory and Spectroscopy**

**I. Symmetry and Group Theory in Chemistry
Lecture 5 : Determination of IR and Raman Active Vibrations in
H₂O Molecule**

**Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi**

Symmetry and Group Theory in Chemistry : 25 Hrs

Symmetry elements and symmetry operation, Group and Subgroup, Point group, Classification and representation of groups, The defining property of a group, Sub group and Class, Group multiplication table for C_{2v} , C_{2h} and C_{3v} point group, Generators and Cyclic groups. Similarity Transformation, Table of conjugates for C_{2v} , C_{2h} and C_{3v} point group, Schonflies symbols.

Matrix notation for symmetry operation, Representations of groups by matrices (representation for the C_n , C_{nv} , C_{nh} and D_{nh} groups to be worked out explicitly). Character of a representation, Mulliken symbols for irreducible representations, Direct product relationship, Applications of group theory to quantum mechanics-identifying non-zero matrix elements.

The great orthogonal theorem (without proof) and rules derived from this theorem. Derivation of the orthonormalization condition. Character table. Construction of character table: C_{2v} and C_{3v} (only). Reducible representations and their reduction. Total character and their calculation. Application of character table in determination of IR and Raman active vibrations: H_2O , BF_3 and N_2F_2 .

Coverage:

- 1. Molecular Vibrations of H_2O**
- 2. Raman Active Molecular Vibrations**
- 3. IR active Molecular Vibrations**
- 4. Mutual Exclusion Rule**
- 5. Summary**

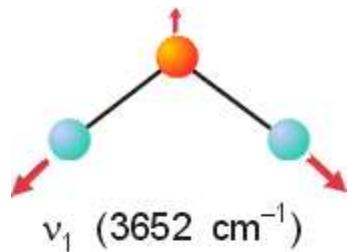
Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of H₂O Molecule

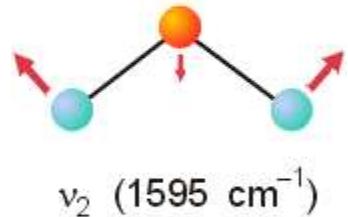
$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

The three vibrational modes remain. Two have A₁ symmetry, and one has B₁ symmetry.

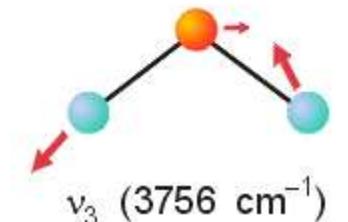
Two vibrations are symmetric with respect to all symmetry operations of the group.


One vibration is asymmetric with respect to rotation and reflection perpendicular to the molecular plane.

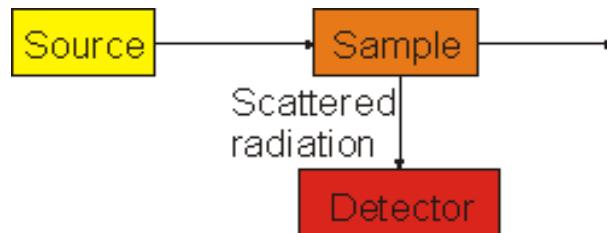
C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R_z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz


Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations


$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

A_1 symmetric stretch


A_1 bend

B_1 asymmetric stretch

Raman Active Molecular Vibrations

Raman spectroscopy measures the wavelengths of light (in the IR range) scattered by a molecule. Certain molecular vibrations will cause the frequency of the scattered radiation to be less than the frequency of the incident radiation.

For a molecular vibration to be seen in the Raman spectrum (Raman active), it must change the polarizability of the molecule. The polarizability has the same symmetry properties as the quadratic functions:

$$xy, yz, xz, x^2, y^2 \text{ and } z^2$$

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

IR active Molecular Vibrations

For a molecular vibration to be seen in the infrared spectrum (IR active), it must change the dipole moment of the molecule. The dipole moment vectors have the same symmetry properties as the cartesian coordinates x, y and z.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of Water

$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

The two vibrations with A₁ symmetry have z as a basis function, so they will be seen in the infrared spectrum of water. This will result in two peaks (at different frequencies) in the IR spectrum of water.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of Water

$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

The two vibrations with A₁ symmetry also have quadratic basis functions, so they will be seen in the Raman spectrum of water as well.

The two vibrations with A₁ symmetry will appear as two peaks in both the IR and Raman spectra. The two frequencies observed in the IR and Raman for these vibrations will be the same in both spectra.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of Water

$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

The two vibrations with A₁ symmetry will appear as two peaks in both the IR and Raman spectra. The two frequencies observed in the IR and Raman for these vibrations will be the same in both spectra.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of Water

$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

The vibration with B₁ symmetry has x and xz as basis functions. This vibration will be both IR active and Raman active. This vibration will appear as a peak (at the same frequency) in both spectra.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Molecular Vibrations of Water

$$\Gamma_{\text{vib}} = 2A_1 + B_1$$

C _{2V}	E	C ₂	σ _v (xz)	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

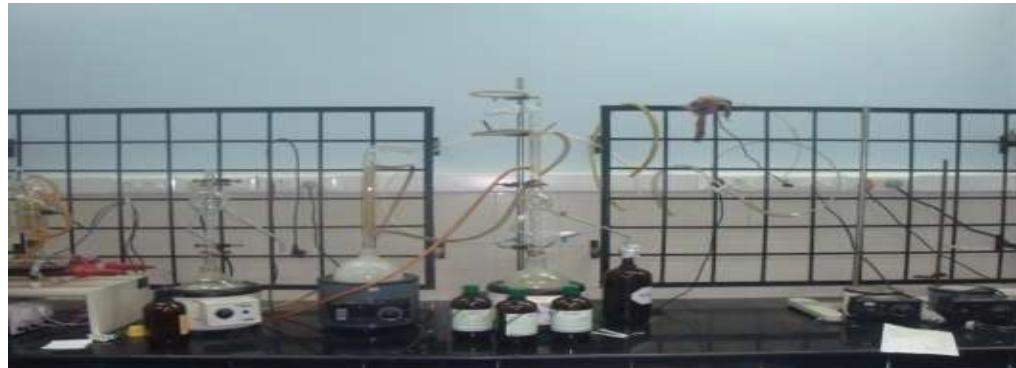
Both the IR and Raman spectra should show three different peaks.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Mutual Exclusion Rule

If a molecule has a center of symmetry, none of its modes of vibration can be both infrared and Raman active.

If a molecule has a center of symmetry, none of its modes of vibration can be both infrared and Raman active.


The cis and trans isomers of square planar $ML_2(CO)_2$, can be easily distinguished using spectroscopy. The cis isomer has absorptions that are seen in both the IR and Raman spectra, whereas the trans isomer does not.

Lecture 5 : Determination of IR and Raman Active Vibrations in H₂O Molecule

Summary

1. Obtain the point group of the molecule.
2. Obtain Γ_{3N} by considering the three cartesian coordinates on all atoms that aren't moved by the symmetry operation.
3. Reduce Γ_{3N} .
4. Eliminate translations and rotations.
5. Determine if remaining vibrations are IR and/or Raman active.

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi