B.Sc. Semester-VI
 Organic Chemistry Paper-XIV

3. Heterocyclic Compounds

Coverage:

5. Furan, Pyrrole and Thiophene : (i) Electrophilic Substitution Reactions
(ii) Deprotonation/Direct Metallation

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Furans, Pyrroles and Thiophenes - Electrophilic Substitution

Electrophilic Substitution - Regioselectivity

- Pyrrole $>$ furan $>$ thiophene $>$ benzene
- Thiophene is the most aromatic in character and undergoes the slowest reaction
- Pyrrole and furan react under very mild conditions
- α-Substitution favoured over β-substitution more resonance forms for intermediate and so the charge is less localised (also applies to the transition state)
- Some β-substitution usually observed - depends on X and substituents

Furans - Electrophilic Substitution

Nitration of Furans

- Nitration can occur by an addition-elimination process
- When $\mathrm{NO}_{2} \mathrm{BF}_{4}$ is used as a nitrating agent, the reaction follows usual mechanism

Bromination of Furans

- Furan reacts vigorously with Br_{2} or Cl_{2} at room temp. to give polyhalogenated products
- It is possible to obtain 2-bromofuran by careful control of temperature

Furans - Electrophilic Substitution

Friedel-Crafts Acylation of Furan

- Blocking groups at the α positions and high temperatures required to give β acylation Vilsmeier Formylation of Furan

Mannich Reaction of Furans

Thiophenes - Electrophilic Substitution

Nitration of Thiophenes

- Reagent AcONO_{2} generated in situ from $\mathrm{c}-\mathrm{HNO}_{3}$ and $\mathrm{Ac}_{2} \mathrm{O}$

Halogenation of Thiophenes

- Occurs readily at room temperature and even at $-30^{\circ} \mathrm{C}$
- Careful control or reaction conditions is required to ensure mono-bromination

Pyrroles - Electrophilic Substitution

Nitration of Pyrroles

- Mild conditions are required ($\mathrm{c}-\mathrm{HNO}_{3}$ and $\mathrm{c}-\mathrm{H}_{2} \mathrm{SO}_{4}$ gives decomposition)

Vilsmeier Formylation of Pyrroles

Pyrroles - Porphyrin Formation

$R^{1}, R^{2}=H^{\dagger} \downarrow$

- The extended aromatic 18π-electron system is more stable than that having four isolated aromatic pyrroles

Furans, Pyrroles Thiophenes - Deprotonation

Metallation

Deprotonation of Pyrroles

- Free pyrroles can undergo N or C deprotonation
- Large cations and polar solvents favour N substitution
- A temporary blocking group on N can be used to obtain the C-substituted compound

Furans, Pyrroles Thiophenes - Directed Metallation

Control of Regioselectivity in Deprotonation

Common directing groups: $\mathrm{CO}_{2} \mathrm{H}(\mathrm{Li}), \mathrm{CH}_{2} \mathrm{OMe}, \mathrm{CONR}_{2}, \mathrm{CH}(\mathrm{OR})_{2}$
Synthesis of α, α^{\prime}-Disubstituted Systems

Use of a Trialkylsilyl Blocking Group

