B.Sc. Semester-VI Organic Chemistry Paper-XIV

3. Heterocyclic Compounds

Coverage:

5. Furan, Pyrrole and Thiophene: (i) Electrophilic Substitution Reactions

(ii) Deprotonation/Direct Metallation

Dr. Rajeev Ranjan

University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Furans, Pyrroles and Thiophenes – Electrophilic Substitution

Electrophilic Substitution – Regioselectivity

- Pyrrole > furan > thiophene > benzene
- Thiophene is the most aromatic in character and undergoes the slowest reaction
- Pyrrole and furan react under very mild conditions
- α -Substitution favoured over β -substitution more resonance forms for intermediate and so the charge is less localised (also applies to the transition state)
- Some β-substitution usually observed depends on X and substituents

2

Furans – Electrophilic Substitution

Nitration of Furans

- Nitration can occur by an addition-elimination process
- When NO₂BF₄ is used as a nitrating agent, the reaction follows usual mechanism

Bromination of Furans

- Furan reacts vigorously with Br₂ or Cl₂ at room temp. to give polyhalogenated products
- It is possible to obtain 2-bromofuran by careful control of temperature

Furans – Electrophilic Substitution

Friedel-Crafts Acylation of Furan

• Blocking groups at the α positions and high temperatures required to give β acylation

Vilsmeier Formylation of Furan

Mannich Reaction of Furans

Thiophenes – Electrophilic Substitution

Nitration of Thiophenes

Reagent AcONO₂ generated in situ from c-HNO₃ and Ac₂O

Halogenation of Thiophenes

- Occurs readily at room temperature and even at −30 °C
- Careful control or reaction conditions is required to ensure mono-bromination

Pyrroles – Electrophilic Substitution

Nitration of Pyrroles

• Mild conditions are required (c-HNO₃ and c-H₂SO₄ gives decomposition)

Vilsmeier Formylation of Pyrroles

Pyrroles – Porphyrin Formation

• The extended aromatic 18 π -electron system is more stable than that having four isolated aromatic pyrroles

Furans, Pyrroles Thiophenes – Deprotonation

Metallation

$$n$$
-BuLi

 $\alpha > \beta$

Bu

 $X = 0$ pK_a(THF) X 35.6

 $= NR$ pK_a(THF) X 39.5

 $= S$ pK_a(THF) 33.0

Deprotonation of Pyrroles

- Free pyrroles can undergo *N* or *C* deprotonation
- Large cations and polar solvents favour N substitution
- A temporary blocking group on N can be used to obtain the C-substituted compound

Furans, Pyrroles Thiophenes – Directed Metallation

Control of Regioselectivity in Deprotonation

Common directing groups: CO₂H(Li), CH₂OMe, CONR₂, CH(OR)₂

Synthesis of α , α '-Disubstituted Systems

Y:

$$n$$
-BuLi

 E^1
 E^2
 E^2
 E^2
 E^1

Use of a Trialkylsilyl Blocking Group

Y:

$$n-BuLi$$
 $N-BuLi$
 $N-BuLi$