Non-Deterministic Turing Machine

A **Nondeterministic Turing machine** is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. In a Non-Deterministic Turing Machine, for every state and symbol, there are a group of actions the TM can have. So, here the transitions are not deterministic. The computation of a non-deterministic Turing Machine is a tree of configurations that can be reached from the start configuration.

A nondeterministic Turing machine is a 7-tuple (Q, Σ , Γ , δ , q_0 ,

b, F) where

- 1. Q is a finite nonempty set of states
- 2. Γ is a finite nonempty set of tape symbols
- 3. $b \in \Gamma$ is called the blank symbol
- 4. Σ is a nonempty subset of Γ , called the set of input symbols. We assume that $b \notin \Sigma$.
- 5. q_0 is the initial state
- 6. $F \subseteq Q$ is the set of final states
- 7. δ is a partial function from $Q \times \Gamma$ into the power set of $Q \times \Gamma \times \{L, R\}$.