

Python Zip File

Gaurav Kr. suman MAT12

1 | P a g e

ZIP is an archive file format that supports lossless data compression. By lossless
compression, we mean that the compression algorithm allows the original data to be
perfectly reconstructed from the compressed data. So, a ZIP file is a single file
containing one or more compressed files, offering an ideal way to make large files
smaller and keep related files together.

• To reduce storage requirements.
• To improve transfer speed over standard connections.

To work on zip files using python, we will use an inbuilt python module called zipfile.

importing required modules
from zipfile import ZipFile

specifying the zip file name
file_name = "my_python_files.zip"

opening the zip file in READ mode
with ZipFile(file_name, 'r') as zip:
 # printing all the contents of the zip file
 zip.printdir()

 # extracting all the files
 print('Extracting all the files now...')
 zip.extractall()
 print('Done!')

The above program extracts a zip file named “my_python_files.zip” in the same
directory as of this python script.
The output of above program may look like this:

Let us try to understand the above code in pieces:

• from zipfile import ZipFile

https://docs.python.org/2/library/zipfile.html

2 | P a g e

ZipFile is a class of zipfile module for reading and writing zip files. Here we
import only class ZipFile from zipfile module.

• with ZipFile(file_name, 'r') as zip:

Here, a ZipFile object is made by calling ZipFile constructor which accepts zip
file name and mode parameters. We create a ZipFile object in READ mode and
name it as zip.

• zip.printdir()

printdir() method prints a table of contents for the archive.
• zip.extractall()

extractall() method will extract all the contents of the zip file to the current
working directory. You can also call extract() method to extract any file by
specifying its path in the zip file.
For example:

•
zip.extract('python_files/python_wiki.txt')

This will extract only the specified file.

If you want to read some specific file, you can go like this:

data = zip.read(name_of_file_to_read)

Consider a directory (folder) with such a format:

Here, we will need to crawl whole directory and its sub-directories in order to get a
list of all file-paths before writing them to a zip file.
The following program does this by crawling the directory to be zipped:

importing required modules
from zipfile import ZipFile
import os

def get_all_file_paths(directory):

 # initializing empty file paths list
 file_paths = []

 # crawling through directory and subdirectories
 for root, directories, files in os.walk(directory):

3 | P a g e

 for filename in files:
 # join the two strings in order to form the full filepath.
 filepath = os.path.join(root, filename)
 file_paths.append(filepath)

 # returning all file paths
 return file_paths

def main():
 # path to folder which needs to be zipped
 directory = './python_files'

 # calling function to get all file paths in the directory
 file_paths = get_all_file_paths(directory)

 # printing the list of all files to be zipped
 print('Following files will be zipped:')
 for file_name in file_paths:
 print(file_name)

 # writing files to a zipfile
 with ZipFile('my_python_files.zip','w') as zip:
 # writing each file one by one
 for file in file_paths:
 zip.write(file)

 print('All files zipped successfully!')

if __name__ == "__main__":
 main()
The output of above program looks like this:

