1042 Quantum Theory of Diamagnetism

In a magnetic field, the generalized momentum ?of a particle carrying a charﬁe e is
7 y G\ e
P=m? +ed=m7 +e \7’/% (10.11)

where 4 is the vector potential defined through Eq. (10.17).
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i elocity ' in an electric gy
g with a v dmy R,

in,
The force F acting on the chzzrgfe e::::flb :
field is known as Lorentz force and 15 &1

F=e [73 + ('?7) 3 ﬁ)] (10,

magnetic field strengths respectively.

Jectric and : : ations given by
Whe{%f eﬁfg;ﬁ f;:gnetic fields satisfy Maxwell’s equ

V . —g =0 ‘ (1&14)
v x E = _%?_ (10.15)
¥ x B = #07 (10.16)

From Eq. (10.14) it follows that ? can be expressed as the curl of a vector, i.e. o

=0
H—> B=VxZ , Sonca i vy kﬁo.m

where 4 is the vector potential. at K‘)“A’H
Thus, Eq. (10.15) takes the form

FxE=-2(Fx2)

v x ( e %) =0 _ (101

I 36_‘_:) sty T ( V)([ﬁ@;fg (10.19)

where ¢ is known as scalar potential% A_;bb\ H
B = g AA g i (1020
ot Qo A

We, therefore, get
6s
e Lorentz forcef,? given by Eq. (10.12), becor®

=md_d_:_}=e[“v¢_%€_+(?xv\xz)] - (10'21)

=>

Hence, we may set

Now,

(?x?xi) i (?;41'__3&)_” %_aAz) (102
: = Y\ Oz Oy “\ 0z Ox )
‘0 . ' ' 10.58
3s Weds + vy Ay +0,4,) (

’
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dA: 8A
mA BT B 4,04z 4. 94, 4y 04
y ay V2 az (1024)

dA:c _ BAm aA

2 et bt 0A,
dt 8 gy t g, t+ vy 2o (10.25)
25) from E LI, :
: btrﬂcting Eq. (10 om Hq. (10.23), we get
U
_?_(Tu*-}f) d£m+a;m_ (QA__Qi (84, oA,
g ' Oz By V2 _c':?z— e ) (10.26)

— Eq. (10.22) with Eq. (10.26) we find that

(” x ¥ x A) = 50 }é (10.27)

Using Eq. (10. 27) the components of Lorentz forc iven by Eq. (10 21), along the three
oordinate axes may be written as

N

F_.E = m— = 4 ?
— dt 3:1: dt Nk ( ‘ (1025)
dv dp dA o
Bi=m-=—t=e—"t —e—¥ 0% :
y=m— B w05 (? X) (10.291)_.
dv, 8¢ dA, @ ’
F, Sp—z ofi598 Sfe\ O/ 2
m— 55 e g Wt €5, ( ) (10.30)

The above three equations mhay be ?Gemently put in the following compact vector

equation: |
jt (m?+eA) ?[—e¢+e(?-2\)] V (10.31;5;

We now put the above equation in the Lagrangian form

d 6L) oL
D eel et 10.32
(3qj dg; S, ™
o =
where [, is the Lagrangian and ¢; =, gg =y and g3 = 2. [ = " - &
Clearly, if we assume the Lagrangian to be of the form 0 AWV
:'_\ -
_Ll oo (2@ i P (10.33
L_iml'v ep+e ’”) ( P’ﬁ." (S_L__,g;))
- Lf_.’ i :
d substitute it i Eq. (10.32), we get Eq. (10.31)." ? 9 >t
¢ Hamiltonian is given by " ¢
H=T 7-L & !
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where we have used

from Eq. (10.11).
The stationary state
material particle is given by

Schrodinger equation describing the motion of a non‘relativjst.

Hy = Ed (10.35)

Using Eq. (10.34) and making the substitution'f)’ — -—iﬁv, the Schrédinger equatig,

akes the f
rees Befom L(—ih_v’—eﬁ’)2¢+e¢¢=w

2m
= 7 A, v
V% ?eh [(Ef 7) b7 iM] i __A% et B (1039
where we have used the veétor Identlty = vealiv ""“I“"l’r"‘

V-(Zo)= (V- A)w+4-Vy
From Eq. (10.36) we see that thg"effect of the magnetic field is to add to the Hamiltoniay
the terms ™ - i
H’=@(?-Z’+X-V)+8—A2 (1037)
m 2m

For an electron these terms may be treated as small perturbation. If the magnetic field B
is uniform, we may choose A as

A= Bx?
= as
4 51 & a ok
=3| B: By B, (10.38)
T (/] z

If the field vector F is in the z-direction then we have

B, =B,=0;B, =B
and Eq. (10.38) may be written ag

11 1k
= 5 0 0 B
Ty z g
This gives the co 4
g mponent of 4 along the three coordinate axes as QDJ(\

1
A: C L o > 1
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fnc® 7.2=(12 432 .5
oz oy T ; (ZA +JA +kA)
’ \(_’VO
v — ~ 0 @ L @ "‘-3’3'
. e (z%‘“‘a_y”’a; (-% SBy+j- —Bz+’2
%y 9T =D
2 V.4-= ? Dicn vl (10.39)
Aty — v 8 .9 .8
A-V=[(14;+74,+kA At g 3 B
( J Ay ) (zax-i-gay—lrkaz)
2 — o O | <8 8 .8
A-?=(—z-—B+ =Bz +0)-(i=—+3
p2YTJ 5 :r:+) (?'6x+36y+kaz)
a4 — 1., @ 1. .8
A O Cigy L e fpuiOe
2By3$+23$3y
= — B({ 8 @
V==g— —y— 10.40
iy 2 ($3y. y&v) (10:40)
e A2 A2‘+A2+A2 le 2_|_le$2
e Y z 4 Y 4
= !
A= Z}32(:::2 +1?) (10.41)
Using Egs. (10.39) to (10.41), Eq. (10.37) takes the form
,_deh B 0 8) e? 32 e
= m (8y y8$+m (:1:+y) W)

The first term on the right-hand side of Eq. (10.42) is proportional to the orbital angular
momentum component L,. In mono-nuclear systems, this term gives rise to paramagnetism.
The second term gives for a spherically symmetric system a contribution

R <
(- . 2 W
E_lzm T2, as z° +y 3

by first order perturbation energy. The associated magnetic moment is diamagnetic:

08, 1€ By

”=_-3_§ 6m

& : .
e, the atomic susceptibility xa. is given by

S % - (’g’; ) 2, as B = poH  (10.43)

ng i ¢
'S n agreement with the classical result.

.
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10.4.3 Discussion , _

On the basis of quantum orbital theory, the mean value of 7* for an orbit aboyt an effeqi

nuclear charge Z is given by _ o8 15 3k2) "
r2=a§~—z—§ (En ) (10_44)

s of the innermost orbit in hydrogen atom, it
’ S the

hal quantum number.
gram atomic diamagnetic Susceptibil-t
1 ¥

10- ;) is the radiu
d k, the azimut
bution of the orbit to the

102
A= —'283 X 10*"r

where ao(= 0.528 x 10™
radial quantum number an
This gives for the contri

X

- _6 Tt2 ) 2 § kg
xa=—0785x107% | =5 (57" ~ 3 (1045
culated from this expression for helium with twy elec.

If the effective nuclear charge is cal .
—1.9 x 107%), it comes out to be 0.93 which i

trons from its observed susceptibility (Xa

too small.
To make the expression for susceptibility more accurate, van Vleck and Pauling modifieq

the above expression as

2
o[n? (5 2 80+D—1
xa = —0.785 x 10 [Ef (En 5 (10.45)

where [, the orbital quantum number, is equal to (k—1).
Pauling’s calculations necessarily involve a number of approximations. For spherically

symmetric atoms, Hartree has devised a method with which the charge distribution satisfying

the Schrédinger equation may be worked out more precisely. He has given tables and curves
for a number of ions and atoms showing the charge per unit radial distance in a spherical shell
of unit thickness.

dN s g ( :

If =3 be the charge in electron unit per unit radial distance, then the number of electrons

; ° (dN
in the ions is equal to f (H—T—) dr.

0
For the diamagnetic susceptibility, he obtained

(=2}
xa = —2.83 x 10'° f (%) dr (1047)
0

This integral can be evaluated graphically (Figure 10.2). Using atomic units for distanc®

the susceptibility is given by

xa = —0.785 x 107® x area under the shaded portion of the curve

For helium this gives
xa =—1.89 x 1076

a value which agrees remarkably closely with the observed one (—1.9 x 107°)-

-
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Figure 10.2: Variation of r*(dN/dr) with r.
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