The Python Database API

Gaurav Kr. suman

The Python Database API
The Python standard for database interfaces is the Python DB-API. Most Python
database interfaces adhere to this standard.

You can choose the right database for your application. Python Database API
supports a wide range of database servers such as -

o GadFly
« mSQL
« MySQL

e PostgreSQL
e Microsoft SQL Server

e Informix

e Interbase
e Oracle

e Sybase

Here is the list of available Python database interfaces: Python Database Interfaces
and APls. You must download a separate DB API module for each database you
need to access. For example, if you need to access an Oracle database as well as a
MySQL database, you must download both the Oracle and the MySQL database
modules.

The DB API provides a minimal standard for working with databases using Python
structures and syntax wherever possible. This API includes the following -

« Importing the APl module.

« Acquiring a connection with the database.

e Issuing SQL statements and stored procedures.
e Closing the connection

It also supports Data Query Statements, Data Definition Language (DDL), and Data
Manipulation Language (DML). The standard database interface for Python is
Python DB-API. For that, we have the module MySQLdb for MySQL. This is
independent of database engines; so we can write Python scripts to access any
database engine.

Advantages of Database Programming with Python
With Python, we have the following benefits:

« Platform-independent

. Faster and more efficient

. Portable

« Support for relational database systems

1|Page

http://wiki.python.org/moin/DatabaseInterfaces
http://wiki.python.org/moin/DatabaseInterfaces

- Easy to migrate and port database application interfaces
« Support for SQL cursors
It handles open and closed connections

PyMlySQL and Installation

PyMySQL implements the Python Database API 2.0. In this Python
Database tutorial, we will use it to connect to a MySQL database server
from Python. We have the following requirements to install PyMySQL-
a. Python (any of)

« CPython>=2.6 or >=3.3

« PyPy>=4.0

o IronPython 2.7

b. MySQL(any of)
« MySQL>=4.1
« MariaDB>=5.1
To install it, run the following command in the command prompt-

1. C:\Users\lifei>pip install PyMySQL
2. Collecting PyMySQL

Using cached
https://files.pythonhosted.org/packages/2f/be/4310bb405eb83b615cfobd
4501942d9ffoood8bg372ce84e920facbf5c36/PyMySQL-0.9.0-py2.py3-
none-any.whl

Collecting cryptography (from PyMySQL)

Downloading
https://files.pythonhosted.org/packages/67/62/67taef329008026e816a74b
4b97491f8b9ff393d2951820573599c105¢cc32/cryptography-2.2.2-cp36-
cp36m-win_amd64.whl (1.3MB)

100% |
Collecting idna>=2.1 (from cryptography->PyMySQL)

Downloading
https://files.pythonhosted.org/packages/4b/2a/0276479a4b3caeb8a8ciaf
2f8e4355746a97fabosa372e4a2c6a6b876165/idna-2.7-py2.py3-none-
any.whl (58kB)

100% |G | 6B 1.3MB/s
Collecting asnicrypto>=0.21.0 (from cryptography->PyMySQL)

Using cached
https://files.pythonhosted.org/packages/ea/cd/35485615f45f30a510576f1
a56dieoa7adybd8absed7cdc600ef7cd06222/asn1crypto-0.24.0-py2.py3-
none-any.whl

Collecting six>=1.4.1 (from cryptography->PyMySQL)

| 1.3MB 596kB/s

2|Page

Using cached
https://files.pythonhosted.org/packages/67/4b/141a581104b1f6397bfa78a
c9d43d8ad29aycagq3ea9oa2d863fe3056e86a/six-1.11.0-py2.py3-none-
any.whl

Collecting cffi>=1.7; platform_python_implementation != “PyPy” (from
cryptography->PyMySQL)

Downloading
https://files.pythonhosted.org/packages/2f/85/a9184548ad4261916d08a5
odge272bf6f93c54f3735878fbfcg335efdogb/cffi-1.11.5-cp36-cp36m-
win_amd64.whl (166kB)

1009% | NN | :74kB 568kB/s
Collecting pycparser (from cffi>=1.7; platform_ python_implementation !=
“PyPy”->cryptography->PyMySQL)

Using cached
https://files.pythonhosted.org/packages/8c/2d/aad7f16146f4197a11f8e91f
b81df177adcc2073d36a17b1491fdogdf6ed /pycparser-2.18.tar.gz

Installing collected packages: idna, asnicrypto, six, pycparser, cffi,
cryptography, PyMySQL

Running setup.py install for pycparser ... done

Successfully installed PyMySQL-0.9.0 asnicrypto-0.24.0 cffi-1.11.5
cryptography-2.2.2 idna-2.7 pycparser-2.18 six-1.11.0

Also, make sure to install a database server on your machine

Connecting Python Database

Now that you've installed everything, let’s begin connecting to the database.
Let’s create a database first.

a. How to Create Python Database?

mysql> create database demo;

Query OK, 1 row affected (0.21 sec)

mysql> use demo;

Database changed

mysql> create user ‘ayushi’@’localhost’ IDENTIFIED BY ‘yourpassword’
->;

Query OK, o rows affected (0.21 sec)

mysql> grant all on demo.* to ‘ayushi’@’localhost’;

Query OK, o rows affected (0.22 sec)

mysql> create table student(fname varchar(20), Iname varchar(20), age
int, enrolment_no varchar(12));

Query OK, o rows affected (0.62 sec)

b. How to Connect Python Database?

3|Page

1.

>>> import pymysql

>>> db=pymysql.connect("localhost","ayushi","yourpassword","demo") #This saves a connection
object into db

>>> cursor=db.cursor()

>>> cursor.execute("SELECT VERSION()")

>>> print(f"You're running version {cursor.fetchone()}")

You're running version (‘8.0.11’,)

1.

>>> db.close() #Closing the database connection

A cursor is an object that submits different SQL statements to the database
server. A cursor returns a result set object.

How to Create Tables in Python Database?

Now let’s take a look at all operations one by one, starting with creating a
table.

O O N W e

—
I

>>> import pymysql

>>> db=pymysql.connect("localhost","ayushi","yourpassword","demo")

caching sha2: succeeded by fast path.

>>> cursor=db.cursor()

>>> cursor.execute("DROP TABLE IF EXISTS student") #This drops the table and replaces it
>>> query="""CREATE TABLE student(

fname VARCHAR(20), Iname VARCHAR(20),

age INT, enrolment_no VARCHAR(12))"""

>>> cursor.execute(query)
>>> db.close()

How to Insert a Record in Python Database?
Let’s try inserting a record in ‘student’.

O 0N W e

==
= o

>>> import pymysql

>>> db=pymysql.connect("localhost","ayushi","yourpassword","demo")

caching sha2: succeeded by fast path.

>>> cursor=db.cursor()

>>> query="INSERT INTO student VALUES("Ayushi","Sharma",22,"0812CS141028")’
>>>try:

cursor.execute(query)

db.commit() #Commit writing to the database

except:

db.rollback() #Rollback the transaction if not complete

1
12.

>>> db.close()

Let’s check if this makes any changes to the database. In the command
prompt:

4|Page

1. mysql> select * from student;

2.+ + + +mne -+

3. | fname | Iname | age | enrolment_no |
4.+ + + +mne -+

5. | Ayushi | Sharma | 22| 0812CS141028 |
6. + + + +mne -+

7. lrowinset (0.00 sec)

How to Read Records in Python Database?

Now how can we fetch values from a database? Let’s take an example to
fetch records of students from ‘student’ that are older than 22. We have
added another record for this purpose.

>>> import pymysql

>>> db=pymysql.connect("localhost","ayushi","yourpassword","demo")
caching sha2: succeeded by fast path.

>>> cursor=db.cursor()

>>> query="select * from student where age>22"

>>> try:

cursor.execute(query)

resultset=cursor.fetchall() #To fetch all records that satisfy

for record in resultset:

fname=record[0]

. Iname=record|1]

. age=record|2]

enrolment_no=record|3]

print(f'Student: {fname} {Iname}; Enrolment: {enrolment_no}; Age: {age}")
except:

print("Sorry, we encountered a problem")

1

Student: Megha Sharma; Enrolment: 0812CS141015; Age: 24

19. >>>db.close()

We have the following methods and attributes-

O O N W e

e e e
N U1k wN PO

. fetchone()— This fetches the immediate next row from the result set of
the query.

 fetchall()— This fetches the entire result set; it will exclude the records
already extracted.

« rowcount— This is an attribute. It returns an integer denoting the
number of records that a call to execute() affected.

How to Update Records in Python Database?
To update an existing record, we can simply use an SQL query for the same.

>>> import pymysql
>>> db=pymysql.connect("localhost","ayushi","yourpassword","demo")
caching sha2: succeeded by fast path.

>>> cursor=db.cursor()

B w N o

5|Page

5. >>>query="update student set age=age+1 where age<=22"
6. >>>1ry:

7. cursor.execute(query)

8. db.commit()

9. except:

10. db.rollback()

11. 1

12. >>>db.close()

Let’s see if this has made any changes to the actual database. In your
command prompt:

mysql> select * from student;

+ + Fommmemooae -+

| fname | Iname | age | enrolment_no |
+ + Fommmemooae -+

| Ayushi | Sharma | 23 | 0812CS141028 |
| Megha | Sharma | 24 | 0812CS141015 |

B -+

©® N Utk wh o=

2 rows in set (0.00 sec)

How to Delete Records in Python Database?
We can also delete records from a database using Python.

>>> import pymysql

>>> db=pymysql.connect("localhost","ayushi","swaysway7!","demo")
caching sha2: succeeded by fast path.

>>> cursor=db.cursor()

>>> query="delete from student where age>23"
>>>try:

cursor.execute(query)

db.commit()

except:

db.rollback()

1

12. >>>db.close()

And in the command prompt:

O 0N W e

==
= o

1. mysql> select * from student;

/R SR S B ommm e +

3. | fname | Iname | age | enrolment_no |
4.+ + B s o -+

5. | Ayushi | Sharma | 23 | 0812CS141028 |
6. + + s o -+

7. 1rowinset (0.00 sec)

Commit, Roellbaclt, and Disconnecting

A commit command tells the database to finalize the write to the database.
A rollback lets us revert changes and get back to a previous state. For

6|Page

committing, you can use commit(), and for rollback, you can use rollback().

After we're done working with the database, we should close the database to
release resources. We use close() for this. If you don’t get any of this, we
suggest reading up on the basic properties of transactions in databases.

Errors in Transactions

When holding a transaction, you may come across ten different kinds of
errors:

a. Error
This is the base class for errors and a subclass to StandardError.

b. InterfaceError

This is a subclass to Error and Python uses it for errors relating to the
module for database access.

c. DatabaseError
This is a subclass to Error and Python uses it for database errors.

d. OperationalError

This is a subclass of DatabaseError. When Python loses connection to a
database, it throws this error.
This may happen when we haven’t selected a database.

e. DataError

This is a subclass of DatabaseError. Python uses this when there is an error
in the data.

f. InternalError

This is a subclass of DatabaseError. Python uses this for errors internal to
the module we use for the database access.

g. IntegrityError

Also a subclass of DatabaseError. Python uses this for cases where there
can be damage to relational integrity.
This may happen when you try to enter duplicate records in the database.

h. ProgrammingError

This is a subclass of DatabaseError. Errors like bad table names cause this.
This may happen when we try to create a duplicate database.

7|Page

i. NotSupportedError
A subclass of DatabaseError. When we attempt to call functionality that it
doesn’t support, Python raises this error.

j. Warning
This is a subclass of StandardError. Python uses this for non-fatal issues.
So, this was all about Python Database Access. Hope you like our

explanation.

8|Page

