WASTE CHARACTERISTICS

1. Physical characteristics

Information and data on the physical characteristics of solid wastes are important for the selection and operation of equipment and for the analysis and design of disposal facilities. The required information and data include the following:

(i) Density

Density of waste, i.e., its mass per unit volume (kg/m³), is a critical factor in the design of a SWM system, e.g., the design of sanitary landfills, storage, types of collection and transport vehicles, etc. To explain, an efficient operation of a landfill demands compaction of wastes to optimum density. Any normal compaction equipment can achieve reduction in volume of wastes by 75%, which increases an initial density of 100 kg/m³ to 400 kg/m³. In other words, a waste collection vehicle can haul four times the weight of waste in its compacted state than when it is uncompacted. A high initial density of waste precludes the achievement of a high compaction ratio and the compaction ratio achieved is no greater than 1.5:1. Significant changes in density occur spontaneously as the waste moves from source to disposal, due to scavenging, handling, wetting and drying by the weather, vibration in the collection vehicle and decomposition. Note that:

- The effect of increasing the moisture content of the waste is detrimental in the sense that dy density decreases at higher moisture levels;
- Soil-cover plays an important role in containing the waste:

There is an upper limit to the density, and the conservative estimate of in-place density for waste in a sanitary landfill is about 600 kg/m³.

(ii) Moisture content Moisture content is defined as the ratio of the weight of water (wet weight - dry weight) to the total Moisture contains and the west waste. Moisture increases the weight of solid wastes, and thereby, the cost of weight of the west waste. In addition, moisture content is a critical transport. In addition, moisture content is a critical transport. weight of the weight of transport. In addition, moisture content is a critical determinant in the economic collection and transport treatment by incineration because wet most a critical determinant in the economic collection the temperature of water vapour. It is feasibility and in raising the temperature of water vapour. In the main, wastes should be insulated from water under extraneous water. We can calculate the moisture percentage, using the formula given below:

Moisture content (%) = Wet weight - Dry weight/Wet weight x100

A typical range of moisture content is 20 to 40%, representing the extremes of wastes in an arid climate and in the wet season of a region of high precipitation. However, values greater than 40% are not uncommon.

(iii) Size

Measurement of size distribution of particles in waste stream is important because of its significance in the design of mechanical separators and shredders. Generally, the results of size distribution analysis are expressed in the manner used for soil particle analysis. That is to say, they are expressed as a plot of particle size (mm) against percentage, less than a given value.

The physical properties that are essential to analyse wastes disposed at landfills are:

a) Field capacity

The field capacity of MSW is the total amount of moisture which can be retained in a waste sample subject to gravitational pull. It is a critical measure because water in excess of field capacity will form leachate, and leachate can be a major problem in landfills. Field capacity varies with the degree of applied pressure and the state of decomposition of the wastes.

b) Permeability of compacted wastes

The hydraulic conductivity of compacted wastes is an important physical property because it governs the movement of liquids and gases in a landfill. Permeability depends on the other properties of the solid material include pore size distribution, surface area and porosity.

Porosity

It represents the amount of voids per unit overall volume of material. The porosity of MSW varies typically from 0.40 to 0.67 depending on the compaction and composition of the waste. Porosity of solid waste n= e/ (1+e) Where e is void ratio of solid waste.

Compressibility of MSW

Degree of physical changes of the suspended solids or filter cake when subjected to pressure.

 Δ HT = Δ Hi + Δ Hc + Δ H α has a second grown

 $\Delta HT = total$ settlement; $\Delta Hi = immediate$ settlement; $\Delta Hc = consolidation$ settlement; $\Delta H\alpha = secondary$ compression or creep.1

 $C'\alpha = \Delta H/[H0 \times (Log(t2/t1))] = C\alpha/(1+e0)$

 $C'\alpha = \Delta H/[HO \wedge (Bob C)]$ Compression index; and the secondary compression index and secondary compression index and secondary compression index. Starting and ending time of secondary settlement respectively.]

2. Chemical characteristics

Knowledge of the classification of chemical compounds and their characteristics is essential for the Knowledge of the classification of chemical the waste management system, The proper understanding of the behaviour of the products of decomposition and heating values are two examples of chemical characteristics. If solid wastes are to be used as fuel, or are used for any other purpose, we must know their chemical characteristics, including the following:

(i) Lipids

This class of compounds includes fats, oils and grease, and the principal sources of lipids are garbage, cooking oils and fats. Lipids have high heating values, about 38,000 kJ/kg (kilojoules per kilogram), which makes waste with high lipid content suitable for energy recovery. Since lipids become liquid at temperatures slightly above ambient, they add to the liquid content during waste decomposition. Though they are biodegradable, the rate of biodegradation is relatively slow because lipids have a low solubility in water.

(ii) Carbohydrates

These are found primarily in food and yard wastes, which encompass sugar and polymer of sugars (e.g., starch, cellulose, etc.) with general formula (CH₂O)x. Carbohydrates are readily biodegraded to products such as carbon dioxide, water and methane. Decomposing carbohydrates attract flies and rats, and therefore, should not be left exposed for long duration.

(iii) Proteins

These are compounds containing carbon, hydrogen, oxygen and nitrogen, and consist of an organic acid with a substituted amine group (NH₂). They are mainly found in food and garden wastes. The partial decomposition of these compounds can result in the production of amines that have unpleasant odours.

(iv) Natural fibres

These are found in paper products, food and yard wastes and include the natural compounds, cellulose and lignin, that are resistant to biodegradation. (Note that paper is almost 100% cellulose, cotton over 95% and wood products over 40%). Because they are a highly combustible solid waste, having a high proportion of paper and wood products, they are suitable for incineration. Calorific values of oven-dried paper products are in the range of 12,000 -18,000 kJ/kg and of wood about 20,000 kJ/kg, i.e., about half that for fuel oil, which is 44,200 kJ/kg.

(v) Synthetic organic material (Plastics)

Accounting for 1-10%, plastics have become a significant component of solid waste in recent years. They are highly resistant to biodegradation and, therefore, are objectionable and of special concern in SWM. Hence the increasing attention being paid to the recycling of plastics to reduce the proportion of this waste component at disposal sites. Plastics have a high heating value, about 32000 kJ/kg, which makes them very suitable for incineration. But, you must note that polyvinyl chloride (PVC), when burnt, produces dioxin and acid gas. The latter increases corrosion in the combustion system and is responsible for acid rain.

(vi) Non-combustibles

This class includes glass, ceramics, metals, dust and ashes, and accounts for 12-25% of dry solids.

(vii) Heating value

An evaluation of the potential of waste material for use as fuel for incineration requires a determination of its heating value, expressed as kilojoules per kilogram (kJ/kg). The heating value is determined experimentally using the Bomb calorimeter test, in which the heat generated, at a constant temperature of 25°C from the combustion of a dry sample is measured. Since the test temperature is below the boiling point of water (100°C), the combustion water remains in the liquid state. However, during combustion, the temperature of the combustion gases reaches above 100°C, and the resultant water is in the vapour form. Table below shows the typical inert residue and heating values for the components of municipal solid waste (Tchobanoglous, et al., 1977):

Typical Heating and Inert Residue Values						
Components	Insert Residue %		Heating value (kJ/kg)			
	Range	Typical	Range	Typical		
Food wastes	2-8	5	3500-7000	4500		
Paper	4-8	C.0 6 moote	11500-18500	16500		
Cardboard	3-6	(1) (1) 5 miles	14000-17500	16000		
Plastics	2-20	10	28000-37000	32500		
Textiles	2-4	2.5	15000-20000	17500		
Rubber	8-20	10	21000-28000	18500		
Leather	8-20	10	15000-20000	17500		
Garden trimmings	2-6	4.5	2300-18500	6500		
Wood	0.6-2	Daw od 1.5 algista	17500-20000	2.42 h 18500 ·		
Glass	96-99	98	120-240	140		
Tin cans	96-99	96				
Nonferrous metals	90-99	96	240-1200	700		
Ferrous metals	94-99	98	240-1200	700		
Dirt, ash, bricks, etc.	60-80	70	2300-11500	7000		
Municipal solid waste		No. of the Control	9500-13000	10500		

Note that while evaluating incineration as a means of disposal or energy recovery, we need to consider the heating values of respective constituents. For example:

- Organic material yields energy only when dry.
- Organic material yields energy only

 The moisture content in the waste reduces the dry organic material per kilogram of waste and requires a significant amount of energy for drying.
- requires a significant amount of charge requires a significant amount of the waste reduces the proportion of dry organic material per kilogram of the ash content of the waste reduces the proportion of dry organic material per kilogram of waste and retains some heat when removed from the furnace.

Ultimate analysis (viii)

(ph/Li) outsy soll of

This refers to an analysis of waste to determine the proportion of carbon, hydrogen, oxygen, nitrogen and sulphur, and the analysis is done to make mass balance calculation for a chemical or thermal process. Besides, it is necessary to determine ash fraction because of its potentially harmful environmental effects, brought about by the presence of toxic metals such as cadmium, chromium mercury, nickel, lead, tin and zinc. Note that other metals (e.g., iron, magnesium, etc.) may also be present but they are non-toxic. Given table shows the result of ultimate analysis of a typical municipal solid waste:

Range (% dry weight)
25-30
2.5-6.0
15-30
0.25-1.2
0.02-0.12
12-30

(ix) Proximate analysis

TESTE /T THE

00001

32590

1.180871

This is important in evaluating the combustion properties of wastes or a waste or refuse derived fuel. The fractions of interest are:

- Moisture content, which adds weight to the waste without increasing its heating value, and the evaporation of water reduces the heat released from the fuel;
- Ash, which adds weight without generating any heat during combustion;
- Volatile matter, i.e., that portion of the waste that is converted to gases before and during combustion;
- Fixed carbon, which represents the carbon remaining on the surface grates as charcoal. A waste or fuel with a biol or fuel with a high proportion of fixed carbon requires a longer retention time on the furnish grates to achieve a require a longer retention time on the furnish grates to achieve complete combustion than a waste or fuel with a low proportion of fixed carbon.

Table below illustrates a proximate analysis for the combustible components of municipal solid te: waste:

And the company of the	Value, percent		
Components	Range	Typical	
Moisture	15-40	20	
Volatile matter	40-60	53	
Fixed carbon	5-12	7	
Glass, metal, ash	15-30	20	

HEALTH AND ENVIRONMENTAL EFFECTS

An effective solid waste management system is necessary to avoid public health disasters, spread of disease by insects and vectors and adverse effect on water and air (Phelps, et al., 1995). Solid waste workers are the most exposed to the risks of parasitic infections and accidents, and therefore, a SWM system must include proper mechanisms to avoid these incidences. To the direct and indirect risks through accidents, exposure and spread of disease, we must add the effect of visual pollution caused by litter and nuisance created by smoke and dust at disposal sites.

Public health effect

The volume of waste is increasing rapidly as a result of increasing population and improving economic conditions in various localities. This increased volume of wastes is posing serious problems due to insufficient workforce and other constraints in disposing of it properly. Some of the consequences of improper management and handling of wastes are as following

1. Disease vectors and pathways

Wastes dumped indiscriminately provide the food and environment for thriving populations of vermin, which are the agents of various diseases. The pathways of pathogen transmission from wastes to humans are mostly indirect through insects - flies, mosquitoes and roaches and animalsrodents and pigs. Diseases become a public health problem when they are present in the human and animal population of surrounding communities, or if a carrier transmits the etiological agent from host to receptor.

2. Flies

Most common in this category is the housefly, which transmits typhoid, salmonellosis, gastroenteritis and dysentery. Flies have a flight range of about 10 km, and therefore, they are able to spread their influence over a relatively wide area. The four stages in their life-cycle are egg, larva, pupa and adult. Eggs are deposited in the warm, moist environment of decomposing food wastes. When they hatch, the larvae feed on the organic material, until certain maturity is reached, at which time they migrate from the waste to the soil of other dry loose material before being transformed into pupae. The pupae are inactive until the adult-fly emerges. The migration of larvae within 4 to 10 days provides the clue to an effective control measure, necessitating the removal of waste before migration of larvae. Consequently, in warm weather, municipal waste should be collected twice weekly for effective control. In addition, the quality of household and commercial storage containers is very significant. The guiding principle here is to restrict access to flies. Clearly, the use of suitable storage containers and general cleanliness at their location, as well as frequent collection of wastes, greatly reduces the population of flies. Control is also necessary at transfer stations, composting facilities and disposal sites to prevent them from becoming breeding grounds for flies. Covering solid wastes with a layer of earth at landfill sites at the end of every day arrests the problem of fly breeding at the final stage.

3. Mosquitoes

They transmit diseases such as malaria, filaria and dengue fever. Since they breed in stagnant water, control measures should centre on the elimination of breeding places such as tins, cans, tyres, etc. Proper sanitary practices and general cleanliness in the community help eliminate the mosquito problems caused by the mismanagement of solid waste.

4. Roaches

These cause infection by physical contact and can transmit typhoid, cholera and amoebiasis. The problems of roaches are associated with the poor storage of solid waste.

5. Rodents

Rodents (rats) proliferate in uncontrolled deposits of solid wastes, which provide a source of food as well as shelter. They are responsible for the spread of diseases such as plague, murine typhus, leptospirosis, histoplasmosis, rat bite fever, dalmonelosis, trichinosis, etc. The fleas, which rats carry, also cause many diseases. This problem is associated not only with open dumping but also poor sanitation.

6. Occupational hazards

Workers handling wastes are at risk of accidents related to the nature of material and lack of safety precautions. The sharp edges of glass and metal and poorly constructed storage containers may inflict injuries to workers. It is, therefore, necessary for waste handlers to wear gloves, masks and be vaccinated. The infections associated with waste handling, include:

- Skin and blood infections resulting from direct contact with waste and from infected wounds;
- Eye and respiratory infections resulting from exposure to infected dust, especially during landfill operations;
- Diseases that result from the bites of animals feeding on the waste;
- Intestinal infections that are transmitted by flies feeding on the waste;
- Chronic respiratory diseases, including cancers resulting from exposure to dust and hazardous compounds.

In addition, the accidents associated with waste handling include:

- Bone and muscle disorders resulting from the handling of heavy containers and the loading heights of vehicles;
- Infecting wounds resulting from contact with sharp objects;
- Reduced visibility, due to dust along the access routes, creates greater risk of accidents;
- Poisoning and chemical burns resulting from contact with small amounts of hazardous chemical wastes mixed with general wastes such as pesticides, cleaning solutions and solvents in households and commercial establishments:

- Burns and other injuries resulting from occupational accidents at waste disposal sites or from methane gas explosion at landfill sites;
- Serious health hazards, particularly for children, due to careless dumping of lead-acid, nickelcadmium and mercuric oxide batteries.

Apart from rodents, some animals (e.g., dogs, cats, pigs, etc.) also act as carriers of disease. For Apair example, pigs are involved in the spread of diseases like trichinosis, cysticerosis and toxoplasmosis, which are transmitted through infected pork, eaten either in raw state or improperly cooked. Solid wastes, when fed to pigs, should be properly treated (cooked at 100C for at least 50 minutes with suitable equipment).

Environmental effect

Besides causing health disorders that we have touched upon in Subsection 2.4.1, inadequate and improper waste management causes adverse environmental effects such as the following:

1. Air pollution

Burning of solid wastes in open dumps or in improperly designed incinerators emit pollutants (gaseous and particulate matters) to the atmosphere. Studies show that the environmental consequences of open burning are greater than incinerators, especially with respect to aldehydes and particulates. Emissions from an uncontrolled incinerator system include particulate matter, sulphur oxides, nitrogen oxides, hydrogen chloride, carbon monoxide, lead and mercury. Discharge of arsenic, cadmium and selenium is to be controlled, since they are toxic at relatively low exposure levels. Polychlorinated dibenzofurans (PCDFs), commonly called dioxins and furans, are of concern because of their toxicity, carcinogenicity and possible mutagenicity.

Water and land pollution

Water pollution results from dumping in open areas and storm water drains, and improper design, construction and/or operation of a sanitary landfill. Control of infiltration from rainfall and surface runoff is essential in order to minimise the production of leachate. Pollution of groundwater can occur as a result of:

- A. The flow of groundwater through deposits of solid waste at landfill sites;
- B. Percolation of rainfall or irrigation waters from solid wastes to the water table;
- C. Diffusion and collection of gases generated by the decomposition of solid wastes.

The interaction between leachate contaminants and the soil depends on the characteristics of the soil. Soil bacteria stabilise biochemical oxygen demand (BOD), i.e., the amount of oxygen required by micro-organisms to degrade organic matter, by anaerobic action, if toxic substances are in low concentration. The carbon dioxide produced keeps the pH level low, causing the water to dissolve minerals in the aquifers. Consequently, the change in groundwater quality may take place depending on the characteristics of the aquifer. Contamination can spread over considerable distances from the landfill, if the aquifers are of sand or gravel. In clayey soils, the rate of movement is greatly reduced. The capacity of clay to exchange ions restricts the movement of metal ions by capturing them in the soil matrix. Changes in its chemical characteristics are due to hardness, iron and manganese compounds.

3. Visual pollution

The aesthetic sensibility is offended by the unsightliness of piles of wastes on the roadside. The situation is made worse by the presence of scavengers rummaging in the waste. Waste carelessly and irresponsibly discarded in public thoroughfares, along roads and highways and around communal bins (i.e., makeshift containers, without lids, used for the storage of residential, commercial and institutional wastes) gives easy access to animals scavenging for food. The solution to this social problem undoubtedly lies in the implementation of public education at all levels – primary, secondary, tertiary and adult, both short and long term, and in raising the status of public health workers and managers in solid waste management.

4. Noise pollution

Undesirable noise is a nuisance associated with operations at landfills, incinerators, transfer stations and sites used for recycling. This is due to the movement of vehicles, the operation of large machines and the diverse operations at an incinerator site. The impacts of noise pollution may be reduced by careful siting of SWM operations and by the use of noise barriers.

5. Odour pollution

Obnoxious odours due to the presence of decaying organic matter are characteristic of open dumps. They arise from anaerobic decomposition processes and their major constituents are particularly offensive. Proper landfill covering eliminates this nuisance.

6. Explosion hazards

Landfill gas, which is released during anaerobic decomposition processes, contains a high proportion of methane (35 - 73%). It can migrate through the soil over a considerable distance, leaving the buildings in the vicinity of sanitary landfill sites at risk, even after the closure of landfills. Several methods are available for control of landfill gas, such as venting, flaring and the use of impermeable barriers.