Project Estimation techniques

Estimation of various project parameters is a basic project planning activity. The important project parameters that are estimated include: project size, effort required to develop the software, project duration, and cost. These estimates not only help in quoting the project cost to the customer, but are also useful in resource planning and scheduling. There are three broad categories of estimation techniques:

- Empirical estimation techniques
- Heuristic techniques
- Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of the project parameters. While using this technique, prior experience with development of similar products is helpful. Although empirical estimation techniques are based on common sense, different activities involved in estimation have been formalized over the years.

Two popular empirical estimation techniques are:

Expert judgment technique and

Delphi cost estimation.

Expert Judgment Technique

Expert judgment is one of the most widely used estimation techniques. In this approach, an expert makes an educated guess of the problem size after analyzing the problem thoroughly. Usually, the expert estimates the cost of the different components (i.e. modules or subsystems) of the system and then combines them to arrive at the overall estimate. However, this technique is subject to human errors and individual bias. Also, it is possible that the expert may overlook some factors inadvertently. Further, an expert making an estimate may not have experience and knowledge of all aspects of a project. For example, he may be conversant with the database and user interface parts but may not be very knowledgeable about the computer communication part. A more refined form of expert judgment is the estimation made by group of experts. Estimation by a group of experts minimizes factors such as individual oversight, lack of familiarity with a particular aspect of a project, personal bias, and the desire to win contract through overly optimistic estimates. However, the estimate made by a group of experts may still exhibit bias on issues where the entire group of experts may be biased due to reasons such as

political considerations. Also, the decision made by the group may be dominated by overly assertive members.

Delphi cost estimation

Delphi cost estimation approach tries to overcome some of the shortcomings of the expert judgment approach. Delphi estimation is carried out by a team comprising of a group of experts and a coordinator. In this approach, the coordinator provides each estimator with a copy of the software requirements specification (SRS) document and a form for recording his cost estimate. Estimators complete their individual estimates anonymously and submit to the coordinator. In their estimates, the estimators mention any unusual characteristic of the product which has influenced his estimation. The coordinator prepares and distributes the summary of the responses of all the estimators, and includes any unusual rationale noted by any of the estimators. Based on this summary, the estimators re-estimate. This process is iterated for several rounds. However, no discussion among the estimators is allowed during the entire estimation process. The idea behind this is that if any discussion is allowed among the estimators, then many estimators may easily get influenced by the rationale of an estimator who may be more experienced or senior. After the completion of several iterations of estimations, the coordinator takes the responsibility of compiling the results and preparing the final estimate.

Heuristic Techniques

Heuristic techniques assume that the relationships among the different project parameters can be modeled using suitable mathematical expressions. Once the basic (independent) parameters are known, the other (dependent) parameters can be easily determined by substituting the value of the basic parameters in the mathematical expression. Different heuristic estimation models can be divided into the following two classes:

single variable model and the multi variable model.

Single variable estimation models provide a means to estimate the desired characteristics of a problem, using some previously estimated basic (independent) characteristic of the software product such as its size.

A single variable estimation model takes the following form:

Estimated Parameter = c1 * ed 1

In the above expression, e is the characteristic of the software which has already been estimated (independent variable).

Estimated Parameter is the dependent parameter to be estimated. The dependent parameter to be estimated could be effort, project duration, staff size, etc. c1 and d1 are constants. The values of the constants c1 and d1 are usually determined using data collected from past projects (historical data). The basic COCOMO model is an example of single variable cost estimation model.

A multivariable cost estimation model takes the following form: Estimated Resource = c1*e1 d 1 + c2*e2 d 2 + ... Where e1, e2, ... are the basic (independent) characteristics of the software already estimated, and c1, c2, d1, d2, ... are constants.

Multivariable estimation models are expected to give more accurate estimates compared to the single variable models, since a project parameter is typically influenced by several independent parameters. The independent parameters influence the dependent parameter to different extents. This is modeled by the constants c1, c2, d1, d2, Values of these constants are usually determined from historical data. The intermediate COCOMO model can be considered to be an example of a multivariable estimation model.

Analytical Estimation technique: Analytical estimation is a type of technique that is used to measure work. In this technique, firstly the task is divided or broken down into its basic component operations or elements for analyzing. Second, if the standard time is available from some other source, then these sources are applied to each element or component of work.

Third, if there is no such time available, then the work is estimated based on the experience of the work. In this technique, results are derived by making certain basic assumptions about the project. Hence, the analytical estimation technique has some scientific basis. Halstead's software science is based on an analytical estimation model.