
SQL SUBQUERIES

A subquery is a SQL query nested inside a larger query.

• A subquery may occur in:

o - A SELECT clause

o - A FROM clause

o - A WHERE clause

• In MySQL subquery can be nested inside a SELECT, INSERT, UPDATE, DELETE,

SET, or DO statement or inside another subquery.

• A subquery is usually added within the WHERE Clause of another SQL SELECT

statement.

• we can use the comparison operators, such as >, <, or =. The comparison operator can

also be a multiple-row operator, such as IN, ANY, SOME, or ALL.

• A subquery can be treated as an inner query, which is a SQL query placed as a part of

another query called as outer query.

• The inner query executes first before its parent query so that the results of the inner

query can be passed to the outer query.

SYNTAX:

Select select_list

From table

Where epxr_operator

(Select select_list from table);

Example:

mysql> SELECT first_name,last_name, salary FROM emp_details

 WHERE salary >(SELECT salary FROM emp_details

 WHERE first_name='Alexander');

Output:

+------------+-----------+----------+

| first_name | last_name | salary |

+------------+-----------+----------+

| Steven | King | 24000.00 |

| Neena | Kochhar | 17000.00 |

| Lex | De Haan | 17000.00 |

| RABI | CHANDRA | 15000.00 |

| Ana | King | 17000.00 |

+------------+-----------+----------+

5 rows in set (0.00 sec)

• Subquery syntax as specified by the SQL standard and supported

in MySQL
DELETE FROM t1

 WHERE s11 > ANY

 (SELECT COUNT(*) /* no hint */ FROM t2

 WHERE NOT EXISTS

 (SELECT * FROM t3

 WHERE ROW(5*t2.s1,77)=

 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77

FROM

 (SELECT * FROM t5) AS t5)));

Subqueries: Guidelines

There are some guidelines to consider when using subqueries :

- A subquery must be enclosed in parentheses.

- Use single-row operators with single-row subqueries, and use multiple-row

operators with multiple-row subqueries.

- If a subquery (inner query) returns a null value to the outer query, the outer

query will not return any rows when using certain comparison operators in a

WHERE clause.

types of Subqueries

• The Subquery as Scalar Operand

• Comparisons using Subqueries

• Subqueries with ALL, ANY, IN, or SOME

• Row Subqueries

• Subqueries with EXISTS or NOT EXISTS

• Correlated Subqueries

• Subqueries in the FROM Clause

• MySQL Subquery as Scalar Operand

A scalar subquery is a subquery that returns exactly one column value

from one row. A scalar subquery is a simple operand, and we can use it

almost anywhere a single column value or literal is legal. If the subquery

returns 0 rows then the value of scalar subquery expression in NULL

and if the subquery returns more than one row then MySQL returns an

error.

There is some situation where a scalar subquery cannot be used. If a

statement permits only a literal value, we cannot use a subquery. For

example, LIMIT requires literal integer arguments, and LOAD DATA

INFILE requires a literal string file name. we cannot use subqueries to

supply these values.

• Example: MySQL Subquery as Scalar Operand

mysql> SELECT employee_id, last_name,

(CASE WHEN department_id=(

SELECT department_id from departments WHERE

location_id=2500)

THEN 'Canada' ELSE 'USA' END)

location FROM employees;

output:

+-------------+-------------+----------+

| employee_id | last_name | location |

+-------------+-------------+----------+

| 100 | King | USA |

| 101 | Kochhar | USA |

| 102 | De Haan | USA |

| 103 | Hunold | USA |

| 104 | Ernst | USA |

| 105 | Austin | USA |

| - - - - - - - - - - - - - - - - - - -|

| - - - - - - - - - - - - - - - - - - -|

107 rows in set (0.00 sec)

MySQL Subqueries: Using Comparisons

A subquery can be used before or after any of the comparison operators. The

subquery can return at most one value. The value can be the result of an

arithmetic expression or a column function. SQL then compares the value that

results from the subquery with the value on the other side of the comparison

operator. we can use the following comparison operators:

Operator Description

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

!= Not equal to

<> Not equal to

<=> NULL-safe equal to operator

For example, suppose we want to find the employee id, first_name,

last_name, and salaries for employees whose average salary is higher than

the average salary throughout the company.

Select employee_id, first_name , last_name, salary from employees where salary

>(Select Avg (salary) from employees);

mysql> SELECT employee_id,first_name,last_name,salary

 FROM employees WHERE salary >

 (SELECT AVG(SALARY) FROM employees);

Output:

+-------------+-------------+------------+----------+

| employee_id | first_name | last_name | salary |

+-------------+-------------+------------+----------+

| 100 | Steven | King | 24000.00 |

| 101 | Neena | Kochhar | 17000.00 |

| 102 | Lex | De Haan | 17000.00 |

| 103 | Alexander | Hunold | 9000.00 |

| 108 | Nancy | Greenberg | 12000.00 |

| 109 | Daniel | Faviet | 9000.00 |

| 120 | Matthew | Weiss | 8000.00 |

| 121 | Adam | Fripp | 8200.00 |

| 122 | Payam | Kaufling | 7900.00 |

|- -|

|- -|

+-------------+-------------+------------+----------+

MySQL Subqueries with ALL, ANY, IN, or SOME

we can use a subquery after a comparison operator, followed by the keyword

ALL, ANY, or SOME.

The ALL operator compares value to every value returned by the subquery.

Therefore ALL operator (which must follow a comparison operator) returns

TRUE if the comparison is TRUE for ALL of the values in the column that the

subquery returns.

Syntax:

operand comparison_operator ALL (subquery)

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

Code:

SELECT c1 FROM t1 WHERE c1 <> ALL (SELECT c1 FROM t2);

SELECT c1 FROM t1 WHERE c1 NOT IN (SELECT c1 FROM t2);

Example: MySQL Subquery, ALL operator

The following query selects the department with the highest average salary.

The subquery finds the average salary for each department, and then the

main query selects the department with the highest average salary.

mysql> SELECT department_id, AVG(SALARY)

FROM EMPLOYEES GROUP BY department_id

HAVING AVG(SALARY)>=ALL

(SELECT AVG(SALARY) FROM EMPLOYEES GROUP BY department_id);

Output:

+---------------+--------------+

| department_id | AVG(SALARY) |

+---------------+--------------+

| 90 | 19333.333333 |

+---------------+--------------+

1 row in set (0.00 sec)

Note: Here we have used ALL keyword for this subquery as the department

selected by the query must have an average salary greater than or equal to all

the average salaries of the other departments.

The ANY operator compares the value to each value returned by the

subquery. Therefore ANY keyword (which must follow a comparison operator)

returns TRUE if the comparison is TRUE for ANY of the values in the column

that the subquery returns.

Syntax:

operand comparison_operator ANY (subquery)

Example: MySQL Subquery, ANY operator

The following query selects any employee who works in the location 1800.

The subquery finds the department id in the 1800 location, and then the main

query selects the employees who work in any of these departments.

mysql> SELECT first_name, last_name,department_id

FROM employees WHERE department_id= ANY

(SELECT DEPARTMENT_ID FROM departments WHERE

location_id=1800);

Output:

+------------+-----------+---------------+

| first_name | last_name | department_id |

+------------+-----------+---------------+

| Michael | Hartstein | 20 |

| Pat | Fay | 20 |

+------------+-----------+---------------+

2 rows in set (0.00 sec)

Note: We have used ANY keyword in this query because it is likely that the

subquery will find more than one departments in 1800 location. If we use the

ALL keyword instead of the ANY keyword, no data is selected because no

employee works in all departments of 1800 location

When used with a subquery, the word IN (equal to any member of the list) is

an alias for = ANY. Thus, the following two statements are the same:

Code:

SELECT c1 FROM t1 WHERE c1 = ANY (SELECT c1 FROM t2);

SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t2);

The word SOME is an alias for ANY. Thus, these two statements are the

same:

Code:

SELECT c1 FROM t1 WHERE c1 <> ANY (SELECT c1 FROM t2);

SELECT c1 FROM t1 WHERE c1 <> SOME (SELECT c1 FROM t2);

MySQL Row Subqueries

A row subquery is a subquery that returns a single row and more than one

column value. You can use = , >, <, >=, <=, <>, !=, <=> comparison operators.

See the following examples:

https://www.w3resource.com/mysql/comparision-functions-and-operators/between-and-operator.php

Code:

SELECT * FROM table1 WHERE (col1,col2) = (SELECT col3, col4 FROM
table2 WHERE id = 10);

SELECT * FROM table1 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM
table2 WHERE id = 10);

For both queries,

• if the table table2 contains a single row with id = 10, the subquery returns a single row. If

this row has col3 and col4 values equal to the col1 and col2 values of any rows in table1,

the WHERE expression is TRUE and each query returns those table1 rows.

• If the table2 row col3 and col4 values are not equal the col1 and col2 values of any

table1 row, the expression is FALSE and the query returns an empty result set. The

expression is unknown (that is, NULL) if the subquery produces no rows.

• An error occurs if the subquery produces multiple rows because a row subquery can

return at most one row.

Example: MySQL Row Subqueries

In the following examples, queries shows differentr result according to above

conditions

 mysql> SELECT first_name

FROM employees

WHERE ROW(department_id, manager_id) = (SELECT department_id,

manager_id FROM departments WHERE location_id = 1800);

Output:

+------------+

| first_name |

+------------+

| Pat |

+------------+

1 row in set (0.00 sec)

mysql>SELECT first_name
FROM employees
WHERE ROW(department_id, manager_id) = (SELECT department_id,
manager_id FROM departments WHERE location_id = 2800);
Empty set (0.00 sec)

mysql>SELECT first_name
FROM employees
WHERE ROW(department_id, manager_id) = (SELECT department_id,
manager_id FROM departments WHERE location_id = 1700);
ERROR 1242 (21000): Subquery returns more than 1 row

MySQL Subqueries with EXISTS or NOT EXISTS

The EXISTS operator tests for the existence of rows in the results set of the

subquery. If a subquery row value is found, EXISTS subquery is TRUE and in

this case NOT EXISTS subquery is FALSE.

Syntax:

SELECT column1 FROM table1 WHERE EXISTS (SELECT * FROM

table2);

I

In the above statement, if table2 contains any rows, even rows with NULL

values, the EXISTS condition is TRUE. Generally, an EXISTS subquery starts

with SELECT *, but it could begin with SELECT 'X', SELECT 5, or SELECT

column1 or anything at all. MySQL ignores the SELECT list in such a

subquery, so it makes no difference.

Example: MySQL Subqueries with EXISTS

From the following tables (employees) find employees (employee_id,

first_name, last_name, job_id, department_id) who have at least one person

reporting to them.

SELECT employee_id, first_name, last_name, job_id,

department_id

FROM employees E

WHERE EXISTS (SELECT * FROM employees WHERE manager_id =

E.employee_id);

Output:

+-------------+------------+-----------+---------+------------

---+

| employee_id | first_name | last_name | job_id |

department_id |

+-------------+------------+-----------+---------+------------

---+

| 100 | Steven | King | AD_PRES |

90 |

| 101 | Neena | Kochhar | AD_VP |

90 |

| 102 | Lex | De Haan | AD_VP |

90 |

| 103 | Alexander | Hunold | IT_PROG |

60 |

| 108 | Nancy | Greenberg | FI_MGR |

100 |

| 114 | Den | Raphaely | PU_MAN |

30 |

| 120 | Matthew | Weiss | ST_MAN |

50 |

| 121 | Adam | Fripp | ST_MAN |

50 |

| ---------- | ---------- | --------- | ------- | -----------

-- |

+-------------+------------+-----------+---------+------------

---+

18 rows in set (0.02 sec)

Example: MySQL Subqueries with NOT EXISTS

NOT EXISTS subquery almost always contains correlations. Here is an

example :

From the following table (departments and employees) find all departments

(department_id, department_name) that do not have any employees.

mysql> SELECT department_id, department_name

FROM departments d

WHERE NOT EXISTS (SELECT * FROM employees WHERE department_id

= d.department_id);

Output:

+---------------+----------------------+

| department_id | department_name |

+---------------+----------------------+

| 120 | Treasury |

| 130 | Corporate Tax |

| 140 | Control And Credit |

| 150 | Shareholder Services |

| 160 | Benefits |

| 170 | Manufacturing |

| 180 | Construction |

| 190 | Contracting |

| 200 | Operations |

| ------------ | -------------------- |

+---------------+----------------------+

16 rows in set (0.00 sec)

MySQL Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table (in

the parent query) that also appears in the outer query. MySQL evaluates from

inside to outside.

Correlated subquery syntax:

Select column1, column2, ….

From table1 outer

Where column1 operator (Select column1, column2 from table2, where

expr1 = outer.expr2);

Example - 1: MySQL Correlated Subqueries

Following query find all employees who earn more than the average salary in

their department.

mysql> SELECT last_name, salary, department_id

FROM employees outerr

WHERE salary > (SELECT AVG(salary) FROM employees WHERE

department_id = outerr.department_id);

Output:

+-----------+----------+---------------+

| last_name | salary | department_id |

+-----------+----------+---------------+

| King | 24000.00 | 90 |

| Hunold | 9000.00 | 60 |

| Ernst | 6000.00 | 60 |

| Greenberg | 12000.00 | 100 |

| Faviet | 9000.00 | 100 |

| Raphaely | 11000.00 | 30 |

| Weiss | 8000.00 | 50 |

| Fripp | 8200.00 | 50 |

| -------- | -------- | ------------ |

+-----------+----------+---------------+

38 rows in set (0.02 sec)

Example - 2: MySQL Correlated Subqueries

From the employees and job_history tables display details of those employees

who have changed jobs at least once.

mysql> SELECT first_name, last_name, employee_id, job_id

FROM employees E

WHERE 1 <= (SELECT COUNT(*) FROM Job_history WHERE employee_id

= E.employee_id);

Output:

+------------+-----------+-------------+---------+

| first_name | last_name | employee_id | job_id |

+------------+-----------+-------------+---------+

| Neena | Kochhar | 101 | AD_VP |

| Lex | De Haan | 102 | AD_VP |

| Den | Raphaely | 114 | PU_MAN |

| Payam | Kaufling | 122 | ST_MAN |

| Jonathon | Taylor | 176 | SA_REP |

| Jennifer | Whalen | 200 | AD_ASST |

| Michael | Hartstein | 201 | MK_MAN |

+------------+-----------+-------------+---------+

7 rows in set (0.00 sec)

MySQL Subqueries in the FROM Clause

Subqueries work in a SELECT statement's FROM clause. The syntax is :

SELECT ... FROM (subquery) [AS] name ...

Every table in a FROM clause must have a name, therefore the [AS] name

clause is mandatory. Any columns in the subquery select list must have

unique names.

Example: MySQL Subqueries in the FROM Clause

We have the following table tb1.

mysql> CREATE TABLE tb1 (c1 INT, c2 CHAR(5), c3 FLOAT); Query

OK, 0 rows affected (0.73 sec)

Let insert some values into tb1.

mysql> INSERT INTO tb1 VALUES (1, '1', 1.0);

Query OK, 1 row affected (0.11 sec)

mysql> INSERT INTO tb1 VALUES (2, '2', 2.0);

Query OK, 1 row affected (0.07 sec)

mysql> INSERT INTO tb1 VALUES (3, '3', 3.0);

Query OK, 1 row affected (0.03 sec)

mysql> select * from tb1;

output:

+------+------+------+

| c1 | c2 | c3 |

+------+------+------+

| 1 | 1 | 1 |

| 2 | 2 | 2 |

| 3 | 3 | 3 |

+------+------+------+

3 rows in set (0.00 sec)

Here is how to use a subquery in the FROM clause, using the example table

(tb1) :

mysql> SELECT sc1, sc2, sc3

FROM (SELECT c1 AS sc1, c2 AS sc2, c3*3 AS sc3 FROM tb1) AS sb

WHERE sc1 > 1;

Output:

+------+------+------+

| sc1 | sc2 | sc3 |

+------+------+------+

| 2 | 2 | 6 |

| 3 | 3 | 9 |

+------+------+------+

2 rows in set (0.02 sec)

